IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v154y2015icp842-850.html
   My bibliography  Save this article

Experimental performance evaluation of a novel heat pump water heater assisted with shower drain water

Author

Listed:
  • Dong, Jiankai
  • Zhang, Zhuo
  • Yao, Yang
  • Jiang, Yiqiang
  • Lei, Bo

Abstract

Since the temperature of shower drain water (SDW) is relatively high, lots of heat is wasted with the discharge of SDW. Therefore, the recovery of this unutilized heat from SDW shows great potential in improving the building energy efficiency. In this paper, a novel heat pump water heater assisted with SDW for small single family was proposed, which could effectively recover the energy in domestic SDW. To improve its performance, a shower waste heat extraction device (WHED) with water pre-heated loops was designed. A prototype of the system was firstly set up, and then the system performances under different conditions were experimented and discussed. The experimental results showed that approximately 70% of energy could be saved using this novel heat pump water heater, compared with the traditional electric water heater. Furthermore, the COP of the system could be improved observably when using water pre-heated loops. Thus the implementation of this novel heat pump water heater was verified to be capable of reducing energy usage and CO2 emissions significantly.

Suggested Citation

  • Dong, Jiankai & Zhang, Zhuo & Yao, Yang & Jiang, Yiqiang & Lei, Bo, 2015. "Experimental performance evaluation of a novel heat pump water heater assisted with shower drain water," Applied Energy, Elsevier, vol. 154(C), pages 842-850.
  • Handle: RePEc:eee:appene:v:154:y:2015:i:c:p:842-850
    DOI: 10.1016/j.apenergy.2015.05.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915006546
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.05.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shen, Chao & Jiang, Yiqiang & Yao, Yang & Wang, Xinlei, 2012. "An experimental comparison of two heat exchangers used in wastewater source heat pump: A novel dry-expansion shell-and-tube evaporator versus a conventional immersed evaporator," Energy, Elsevier, vol. 47(1), pages 600-608.
    2. Nuntaphan, Atipoang & Chansena, Choosak & Kiatsiriroat, Tanongkiat, 2009. "Performance analysis of solar water heater combined with heat pump using refrigerant mixture," Applied Energy, Elsevier, vol. 86(5), pages 748-756, May.
    3. Chua, K.J. & Chou, S.K. & Yang, W.M., 2010. "Advances in heat pump systems: A review," Applied Energy, Elsevier, vol. 87(12), pages 3611-3624, December.
    4. Wu, Jianghong & Yang, Zhaoguang & Wu, Qinghao & Zhu, Yujuan, 2012. "Transient behavior and dynamic performance of cascade heat pump water heater with thermal storage system," Applied Energy, Elsevier, vol. 91(1), pages 187-196.
    5. Liu, Lanbin & Fu, Lin & Jiang, Yi, 2010. "Application of an exhaust heat recovery system for domestic hot water," Energy, Elsevier, vol. 35(3), pages 1476-1481.
    6. Wu, Wei & You, Tian & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "Simulation of a combined heating, cooling and domestic hot water system based on ground source absorption heat pump," Applied Energy, Elsevier, vol. 126(C), pages 113-122.
    7. Wong, L.T. & Mui, K.W. & Guan, Y., 2010. "Shower water heat recovery in high-rise residential buildings of Hong Kong," Applied Energy, Elsevier, vol. 87(2), pages 703-709, February.
    8. Li, Y.W. & Wang, R.Z. & Wu, J.Y. & Xu, Y.X., 2007. "Experimental performance analysis and optimization of a direct expansion solar-assisted heat pump water heater," Energy, Elsevier, vol. 32(8), pages 1361-1374.
    9. Ali Kahraman & Alaeddin Çelebi, 2009. "Investigation of the Performance of a Heat Pump Using Waste Water as a Heat Source," Energies, MDPI, vol. 2(3), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Hao & Gong, Maoqiong & Qin, Xiaoyu, 2019. "Performance analysis of a modified subcritical zeotropic mixture recuperative high-temperature heat pump," Applied Energy, Elsevier, vol. 237(C), pages 338-352.
    2. Pomianowski, M.Z. & Johra, H. & Marszal-Pomianowska, A. & Zhang, C., 2020. "Sustainable and energy-efficient domestic hot water systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    3. Bertrand, Alexandre & Aggoune, Riad & Maréchal, François, 2017. "In-building waste water heat recovery: An urban-scale method for the characterisation of water streams and the assessment of energy savings and costs," Applied Energy, Elsevier, vol. 192(C), pages 110-125.
    4. Guo, Xiaochao & Ma, Zhixian & Ma, Liangdong & Zhang, Jili, 2019. "Experimental study on the performance of a novel in–house heat pump water heater with freezing latent heat evaporator and assisted by domestic drain water," Applied Energy, Elsevier, vol. 235(C), pages 442-450.
    5. Guo, Xiaochao & Ma, Zhixian & Zhang, Jili, 2020. "Performance analysis of a novel integrated home energy system with freezing latent heat collection," Applied Energy, Elsevier, vol. 264(C).
    6. Abdur Rehman Mazhar & Shuli Liu & Ashish Shukla, 2018. "A Key Review of Non-Industrial Greywater Heat Harnessing," Energies, MDPI, vol. 11(2), pages 1-34, February.
    7. Farzin Golzar & David Nilsson & Viktoria Martin, 2020. "Forecasting Wastewater Temperature Based on Artificial Neural Network (ANN) Technique and Monte Carlo Sensitivity Analysis," Sustainability, MDPI, vol. 12(16), pages 1-17, August.
    8. Pochwat, Kamil & Kordana, Sabina & Starzec, Mariusz & Słyś, Daniel, 2019. "Comparison of two-prototype near-horizontal Drain Water Heat Recovery units on the basis of effectiveness," Energy, Elsevier, vol. 173(C), pages 1196-1207.
    9. Zhang, Dongwei & Gao, Zhao & Fang, Chenglei & Shen, Chao & Li, Hang & Qin, Xiang, 2022. "Simulation and analysis of hot water system with comprehensive utilization of solar energy and wastewater heat," Energy, Elsevier, vol. 253(C).
    10. Hadengue, Bruno & Morgenroth, Eberhard & Larsen, Tove A. & Baldini, Luca, 2022. "Performance and dynamics of active greywater heat recovery in buildings," Applied Energy, Elsevier, vol. 305(C).
    11. Xiang Gou & Yang Fu & Imran Ali Shah & Yamei Li & Guoyou Xu & Yue Yang & Enyu Wang & Liansheng Liu & Jinxiang Wu, 2016. "Research on a Household Dual Heat Source Heat Pump Water Heater with Preheater Based on ASPEN PLUS," Energies, MDPI, vol. 9(12), pages 1-16, December.
    12. Chugh, Devesh & Gluesenkamp, Kyle R. & Abu-Heiba, Ahmad & Alipanah, Morteza & Fazeli, Abdy & Rode, Richard & Schmid, Michael & Patel, Viral K. & Moghaddam, Saeed, 2019. "Experimental evaluation of a semi-open membrane-based absorption heat pump system utilizing ionic liquids," Applied Energy, Elsevier, vol. 239(C), pages 919-927.
    13. Morales-Ruiz, S. & Rigola, J. & Oliet, C. & Oliva, A., 2016. "Analysis and design of a drain water heat recovery storage unit based on PCM plates," Applied Energy, Elsevier, vol. 179(C), pages 1006-1019.
    14. Ramadan, Mohamad & Murr, Rabih & Khaled, Mahmoud & Olabi, Abdul Ghani, 2018. "Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery," Energy, Elsevier, vol. 149(C), pages 1010-1021.
    15. Golzar, Farzin & Silveira, Semida, 2021. "Impact of wastewater heat recovery in buildings on the performance of centralized energy recovery – A case study of Stockholm," Applied Energy, Elsevier, vol. 297(C).
    16. Bertrand, Alexandre & Mastrucci, Alessio & Schüler, Nils & Aggoune, Riad & Maréchal, François, 2017. "Characterisation of domestic hot water end-uses for integrated urban thermal energy assessment and optimisation," Applied Energy, Elsevier, vol. 186(P2), pages 152-166.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad, Tanveer & Chen, Huanxin & Shair, Jan, 2018. "Water source heat pump energy demand prognosticate using disparate data-mining based approaches," Energy, Elsevier, vol. 152(C), pages 788-803.
    2. Chae, Kyu-Jung & Ren, Xianghao, 2016. "Flexible and stable heat energy recovery from municipal wastewater treatment plants using a fixed-inverter hybrid heat pump system," Applied Energy, Elsevier, vol. 179(C), pages 565-574.
    3. Guo, J.J. & Wu, J.Y. & Wang, R.Z. & Li, S., 2011. "Experimental research and operation optimization of an air-source heat pump water heater," Applied Energy, Elsevier, vol. 88(11), pages 4128-4138.
    4. Xiang Gou & Yang Fu & Imran Ali Shah & Yamei Li & Guoyou Xu & Yue Yang & Enyu Wang & Liansheng Liu & Jinxiang Wu, 2016. "Research on a Household Dual Heat Source Heat Pump Water Heater with Preheater Based on ASPEN PLUS," Energies, MDPI, vol. 9(12), pages 1-16, December.
    5. Morales-Ruiz, S. & Rigola, J. & Oliet, C. & Oliva, A., 2016. "Analysis and design of a drain water heat recovery storage unit based on PCM plates," Applied Energy, Elsevier, vol. 179(C), pages 1006-1019.
    6. Wu, Wei & Ran, Siyuan & Shi, Wenxing & Wang, Baolong & Li, Xianting, 2016. "NH3-H2O water source absorption heat pump (WSAHP) for low temperature heating: Experimental investigation on the off-design performance," Energy, Elsevier, vol. 115(P1), pages 697-710.
    7. Jie, Ji & Jingyong, Cai & Wenzhu, Huang & Yan, Feng, 2015. "Experimental study on the performance of solar-assisted multi-functional heat pump based on enthalpy difference lab with solar simulator," Renewable Energy, Elsevier, vol. 75(C), pages 381-388.
    8. Sabina Kordana-Obuch & Michał Wojtoń & Mariusz Starzec & Beata Piotrowska, 2023. "Opportunities and Challenges for Research on Heat Recovery from Wastewater: Bibliometric and Strategic Analyses," Energies, MDPI, vol. 16(17), pages 1-36, September.
    9. Ramadan, Mohamad & Murr, Rabih & Khaled, Mahmoud & Olabi, Abdul Ghani, 2018. "Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery," Energy, Elsevier, vol. 149(C), pages 1010-1021.
    10. Mohamed, Elamin & Riffat, Saffa & Omer, Siddig & Zeinelabdein, Rami, 2019. "A comprehensive investigation of using mutual air and water heating in multi-functional DX-SAMHP for moderate cold climate," Renewable Energy, Elsevier, vol. 130(C), pages 582-600.
    11. Cai, Jingyong & Zhang, Feng & Ji, Jie, 2020. "Comparative analysis of solar-air dual source heat pump system with different heat source configurations," Renewable Energy, Elsevier, vol. 150(C), pages 191-203.
    12. Sabina Kordana-Obuch & Mariusz Starzec & Michał Wojtoń & Daniel Słyś, 2023. "Greywater as a Future Sustainable Energy and Water Source: Bibliometric Mapping of Current Knowledge and Strategies," Energies, MDPI, vol. 16(2), pages 1-34, January.
    13. Wang, Zhangyuan & Guo, Peng & Zhang, Haijing & Yang, Wansheng & Mei, Sheng, 2017. "Comprehensive review on the development of SAHP for domestic hot water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 871-881.
    14. Le, Khoa Xuan & Huang, Ming Jun & Shah, Nikhilkumar N. & Wilson, Christopher & Artain, Paul Mac & Byrne, Raymond & Hewitt, Neil J., 2019. "Techno-economic assessment of cascade air-to-water heat pump retrofitted into residential buildings using experimentally validated simulations," Applied Energy, Elsevier, vol. 250(C), pages 633-652.
    15. Poppi, Stefano & Sommerfeldt, Nelson & Bales, Chris & Madani, Hatef & Lundqvist, Per, 2018. "Techno-economic review of solar heat pump systems for residential heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 22-32.
    16. Yang, Seung-Hwan & Rhee, Joong Yong, 2013. "Utilization and performance evaluation of a surplus air heat pump system for greenhouse cooling and heating," Applied Energy, Elsevier, vol. 105(C), pages 244-251.
    17. Chao, Shen & Yiqiang, Jiang & Yang, Yao & Shiming, Deng, 2012. "Experimental performance evaluation of a novel dry-expansion evaporator with defouling function in a wastewater source heat pump," Applied Energy, Elsevier, vol. 95(C), pages 202-209.
    18. You, Tian & Wu, Wei & Shi, Wenxing & Wang, Baolong & Li, Xianting, 2016. "An overview of the problems and solutions of soil thermal imbalance of ground-coupled heat pumps in cold regions," Applied Energy, Elsevier, vol. 177(C), pages 515-536.
    19. Zhang, Dongwei & Gao, Zhao & Fang, Chenglei & Shen, Chao & Li, Hang & Qin, Xiang, 2022. "Simulation and analysis of hot water system with comprehensive utilization of solar energy and wastewater heat," Energy, Elsevier, vol. 253(C).
    20. Zhang, Long & Jiang, Yiqiang & Dong, Jiankai & Yao, Yang, 2018. "Advances in vapor compression air source heat pump system in cold regions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 353-365.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:154:y:2015:i:c:p:842-850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.