IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v72y2014icp824-831.html
   My bibliography  Save this article

Maximizing coal-fired power plant efficiency with integration of amine-based CO2 capture in greenfield and retrofit scenarios

Author

Listed:
  • Van Wagener, David H.
  • Liebenthal, Ulrich
  • Plaza, Jorge M.
  • Kather, Alfons
  • Rochelle, Gary T.

Abstract

A modeling study was performed to investigate the direct impact of amine CO2 scrubbing on the efficiency of a coal-fired power plant. The full scope of the capture process was simulated with 8 m PZ (piperazine) to estimate the steam, electricity, and cooling water requirements. The steam cycle was simulated for applications of the capture technology to both retrofit and greenfield (optimized new build) coal-fired power plants. The reboiler duty of the stripping column had an optimal molar L/G (liquid to gas ratio) of 4.9 in the absorber and the maximum reboiler temperature of 150 °C. Integration of this CO2 capture with a greenfield coal plant yielded an identical optimal L/G, but the optimal reboiler temperature was 140 °C, and the decrease in power plant efficiency was 7.3%. The retrofit case resulted in an optimum case with an L/G of 5.9, a reboiler temperature of 120 °C, and a decrease in plant efficiency of 7.0%. When running at the optimal L/G, the optimization sensitivity to the reboiler temperature was low.

Suggested Citation

  • Van Wagener, David H. & Liebenthal, Ulrich & Plaza, Jorge M. & Kather, Alfons & Rochelle, Gary T., 2014. "Maximizing coal-fired power plant efficiency with integration of amine-based CO2 capture in greenfield and retrofit scenarios," Energy, Elsevier, vol. 72(C), pages 824-831.
  • Handle: RePEc:eee:energy:v:72:y:2014:i:c:p:824-831
    DOI: 10.1016/j.energy.2014.04.117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421400704X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.04.117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leites, I.L. & Sama, D.A. & Lior, N., 2003. "The theory and practice of energy saving in the chemical industry: some methods for reducing thermodynamic irreversibility in chemical technology processes," Energy, Elsevier, vol. 28(1), pages 55-97.
    2. Harkin, Trent & Hoadley, Andrew & Hooper, Barry, 2012. "Using multi-objective optimisation in the design of CO2 capture systems for retrofit to coal power stations," Energy, Elsevier, vol. 41(1), pages 228-235.
    3. Pfaff, I. & Oexmann, J. & Kather, A., 2010. "Optimised integration of post-combustion CO2 capture process in greenfield power plants," Energy, Elsevier, vol. 35(10), pages 4030-4041.
    4. Goto, Kazuya & Yogo, Katsunori & Higashii, Takayuki, 2013. "A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture," Applied Energy, Elsevier, vol. 111(C), pages 710-720.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Süle, Zoltán & Baumgartner, János & Dörgő, Gyula & Abonyi, János, 2019. "P-graph-based multi-objective risk analysis and redundancy allocation in safety-critical energy systems," Energy, Elsevier, vol. 179(C), pages 989-1003.
    2. Isogai, Hirotaka & Nakagaki, Takao, 2024. "Power-to-heat amine-based post-combustion CO2 capture system with solvent storage utilizing fluctuating electricity prices," Applied Energy, Elsevier, vol. 368(C).
    3. Hanak, Dawid P. & Manovic, Vasilije, 2016. "Calcium looping with supercritical CO2 cycle for decarbonisation of coal-fired power plant," Energy, Elsevier, vol. 102(C), pages 343-353.
    4. Hanak, Dawid P. & Kolios, Athanasios J. & Manovic, Vasilije, 2016. "Comparison of probabilistic performance of calcium looping and chemical solvent scrubbing retrofits for CO2 capture from coal-fired power plant," Applied Energy, Elsevier, vol. 172(C), pages 323-336.
    5. Hanak, Dawid P. & Biliyok, Chechet & Manovic, Vasilije, 2015. "Efficiency improvements for the coal-fired power plant retrofit with CO2 capture plant using chilled ammonia process," Applied Energy, Elsevier, vol. 151(C), pages 258-272.
    6. Carapellucci, Roberto & Giordano, Lorena & Vaccarelli, Maura, 2015. "Studying heat integration options for steam-gas power plants retrofitted with CO2 post-combustion capture," Energy, Elsevier, vol. 85(C), pages 594-608.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Shiyi & Lior, Noam & Xiang, Wenguo, 2015. "Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture," Applied Energy, Elsevier, vol. 146(C), pages 298-312.
    2. Khalilpour, Rajab, 2014. "Multi-level investment planning and scheduling under electricity and carbon market dynamics: Retrofit of a power plant with PCC (post-combustion carbon capture) processes," Energy, Elsevier, vol. 64(C), pages 172-186.
    3. Li, Chunxi & Guo, Shiqi & Ye, Xuemin & Fu, Wenfeng, 2019. "Performance and thermoeconomics of solar-aided double-reheat coal-fired power systems with carbon capture," Energy, Elsevier, vol. 177(C), pages 1-15.
    4. Valiani, Saba & Tahouni, Nassim & Panjeshahi, M. Hassan, 2017. "Optimization of pre-combustion capture for thermal power plants using Pinch Analysis," Energy, Elsevier, vol. 119(C), pages 950-960.
    5. Guo, Liheng & Ding, Yudong & Liao, Qiang & Zhu, Xun & Wang, Hong, 2022. "A new heat supply strategy for CO2 capture process based on the heat recovery from turbine exhaust steam in a coal-fired power plant," Energy, Elsevier, vol. 239(PA).
    6. Garlapalli, Ravinder K. & Spencer, Michael W. & Alam, Khairul & Trembly, Jason P., 2018. "Integration of heat recovery unit in coal fired power plants to reduce energy cost of carbon dioxide capture," Applied Energy, Elsevier, vol. 229(C), pages 900-909.
    7. Hanak, Dawid P. & Biliyok, Chechet & Manovic, Vasilije, 2015. "Efficiency improvements for the coal-fired power plant retrofit with CO2 capture plant using chilled ammonia process," Applied Energy, Elsevier, vol. 151(C), pages 258-272.
    8. Bui, Mai & Fajardy, Mathilde & Mac Dowell, Niall, 2017. "Bio-Energy with CCS (BECCS) performance evaluation: Efficiency enhancement and emissions reduction," Applied Energy, Elsevier, vol. 195(C), pages 289-302.
    9. Sharifzadeh, Mahdi & Bumb, Prateek & Shah, Nilay, 2016. "Carbon capture from pulverized coal power plant (PCPP): Solvent performance comparison at an industrial scale," Applied Energy, Elsevier, vol. 163(C), pages 423-435.
    10. Kobayashi, Makoto & Akiho, Hiroyuki & Nakao, Yoshinobu, 2015. "Performance evaluation of porous sodium aluminate sorbent for halide removal process in oxy-fuel IGCC power generation plant," Energy, Elsevier, vol. 92(P3), pages 320-327.
    11. Cheng, Chin-hung & Li, Kangkang & Yu, Hai & Jiang, Kaiqi & Chen, Jian & Feron, Paul, 2018. "Amine-based post-combustion CO2 capture mediated by metal ions: Advancement of CO2 desorption using copper ions," Applied Energy, Elsevier, vol. 211(C), pages 1030-1038.
    12. Zhang, Xiaowen & Zhang, Rui & Liu, Helei & Gao, Hongxia & Liang, Zhiwu, 2018. "Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts," Applied Energy, Elsevier, vol. 218(C), pages 417-429.
    13. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    14. Muhammad Asif & Muhammad Suleman & Ihtishamul Haq & Syed Asad Jamal, 2018. "Post‐combustion CO2 capture with chemical absorption and hybrid system: current status and challenges," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 998-1031, December.
    15. Liu, Xiong & Godbole, Ajit & Lu, Cheng & Michal, Guillaume & Venton, Philip, 2014. "Source strength and dispersion of CO2 releases from high-pressure pipelines: CFD model using real gas equation of state," Applied Energy, Elsevier, vol. 126(C), pages 56-68.
    16. Wang, Fu & Zhao, Jun & Zhang, Houcheng & Miao, He & Zhao, Jiapei & Wang, Jiatang & Yuan, Jinliang & Yan, Jinyue, 2018. "Efficiency evaluation of a coal-fired power plant integrated with chilled ammonia process using an absorption refrigerator," Applied Energy, Elsevier, vol. 230(C), pages 267-276.
    17. Li, Wei & Jia, Zhijie, 2016. "The impact of emission trading scheme and the ratio of free quota: A dynamic recursive CGE model in China," Applied Energy, Elsevier, vol. 174(C), pages 1-14.
    18. Hanak, Dawid P. & Jenkins, Barrie G. & Kruger, Tim & Manovic, Vasilije, 2017. "High-efficiency negative-carbon emission power generation from integrated solid-oxide fuel cell and calciner," Applied Energy, Elsevier, vol. 205(C), pages 1189-1201.
    19. Ortiz, C. & Valverde, J.M. & Chacartegui, R. & Benítez-Guerrero, M. & Perejón, A. & Romeo, L.M., 2017. "The Oxy-CaL process: A novel CO2 capture system by integrating partial oxy-combustion with the Calcium-Looping process," Applied Energy, Elsevier, vol. 196(C), pages 1-17.
    20. Toghyani, Mahboubeh & Rahimi, Amir, 2015. "Exergy analysis of an industrial unit of catalyst regeneration based on the results of modeling and simulation," Energy, Elsevier, vol. 91(C), pages 1049-1056.

    More about this item

    Keywords

    CO2 capture; Integration; Retrofit; Greenfield;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:72:y:2014:i:c:p:824-831. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.