IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v49y2013icp434-443.html
   My bibliography  Save this article

Geometric arrangement and operation mode adjustment in low-enthalpy geothermal borehole fields for heating

Author

Listed:
  • Beck, Markus
  • Bayer, Peter
  • de Paly, Michael
  • Hecht-Méndez, Jozsef
  • Zell, Andreas

Abstract

The efficient operation of ground source heat pump (GSHP) systems with multiple borehole heat exchangers (BHEs) over a lifetime of decades implies an optimized performance of the BHEs and a mitigation of the environmental impact of the system. This paper introduces a new combined optimization approach, which adjusts the BHE positions as well as the individually regulated energy extraction for each single BHE within a given borehole field in conduction dominated media for a given seasonal changing load profile. The optimization of only the BHE positions without optimizing the individual BHE loads nearly produces the same improvement of the underground temperature change of approximately 12% as an optimization of the BHE loads without optimized positioning. The combination of both optimization approaches results in only slightly better results compared to a result achieved by only one of the optimization approaches. Thus for homogeneous fields without groundwater flow, an optimal load assignment can be substituted by an optimal BHE placement, which leads to a considerably reduced complexity of the borehole field.

Suggested Citation

  • Beck, Markus & Bayer, Peter & de Paly, Michael & Hecht-Méndez, Jozsef & Zell, Andreas, 2013. "Geometric arrangement and operation mode adjustment in low-enthalpy geothermal borehole fields for heating," Energy, Elsevier, vol. 49(C), pages 434-443.
  • Handle: RePEc:eee:energy:v:49:y:2013:i:c:p:434-443
    DOI: 10.1016/j.energy.2012.10.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421200847X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.10.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bakirci, Kadir, 2010. "Evaluation of the performance of a ground-source heat-pump system with series GHE (ground heat exchanger) in the cold climate region," Energy, Elsevier, vol. 35(7), pages 3088-3096.
    2. Kim, Seong-Kyun & Bae, Gwang-Ok & Lee, Kang-Kun & Song, Yoonho, 2010. "Field-scale evaluation of the design of borehole heat exchangers for the use of shallow geothermal energy," Energy, Elsevier, vol. 35(2), pages 491-500.
    3. Zheng, Guozhong & Li, Feng & Tian, Zhe & Zhu, Neng & Li, Qianru & Zhu, Han, 2012. "Operation strategy analysis of a geothermal step utilization heating system," Energy, Elsevier, vol. 44(1), pages 458-468.
    4. Mottaghy, Darius & Dijkshoorn, Lydia, 2012. "Implementing an effective finite difference formulation for borehole heat exchangers into a heat and mass transport code," Renewable Energy, Elsevier, vol. 45(C), pages 59-71.
    5. Mustafa Omer, Abdeen, 2008. "Ground-source heat pumps systems and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 344-371, February.
    6. Florides, Georgios A. & Christodoulides, Paul & Pouloupatis, Panayiotis, 2012. "An analysis of heat flow through a borehole heat exchanger validated model," Applied Energy, Elsevier, vol. 92(C), pages 523-533.
    7. Zanchini, Enzo & Lazzari, Stefano & Priarone, Antonella, 2012. "Long-term performance of large borehole heat exchanger fields with unbalanced seasonal loads and groundwater flow," Energy, Elsevier, vol. 38(1), pages 66-77.
    8. Marcotte, D. & Pasquier, P. & Sheriff, F. & Bernier, M., 2010. "The importance of axial effects for borehole design of geothermal heat-pump systems," Renewable Energy, Elsevier, vol. 35(4), pages 763-770.
    9. Yu, X. & Wang, R.Z. & Zhai, X.Q., 2011. "Year round experimental study on a constant temperature and humidity air-conditioning system driven by ground source heat pump," Energy, Elsevier, vol. 36(2), pages 1309-1318.
    10. Ferguson, Grant, 2012. "Characterizing uncertainty in groundwater-source heating and cooling projects in Manitoba, Canada," Energy, Elsevier, vol. 37(1), pages 201-206.
    11. Haehnlein, Stefanie & Bayer, Peter & Blum, Philipp, 2010. "International legal status of the use of shallow geothermal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2611-2625, December.
    12. Fan, Rui & Jiang, Yiqiang & Yao, Yang & Ma, Zuiliang, 2008. "Theoretical study on the performance of an integrated ground-source heat pump system in a whole year," Energy, Elsevier, vol. 33(11), pages 1671-1679.
    13. Bayer, Peter & Saner, Dominik & Bolay, Stephan & Rybach, Ladislaus & Blum, Philipp, 2012. "Greenhouse gas emission savings of ground source heat pump systems in Europe: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1256-1267.
    14. Kalogirou, Soteris A. & Florides, Georgios A. & Pouloupatis, Panayiotis D. & Panayides, Ioannis & Joseph-Stylianou, Josephina & Zomeni, Zomenia, 2012. "Artificial neural networks for the generation of geothermal maps of ground temperature at various depths by considering land configuration," Energy, Elsevier, vol. 48(1), pages 233-240.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Li & Chen, Sarula & Yang, Yang & Sun, Yong, 2019. "Transient heat transfer performance of a vertical double U-tube borehole heat exchanger under different operation conditions," Renewable Energy, Elsevier, vol. 131(C), pages 494-505.
    2. Borge-Diez, David & Colmenar-Santos, Antonio & Pérez-Molina, Clara & López-Rey, África, 2015. "Geothermal source heat pumps under energy services companies finance scheme to increase energy efficiency and production in stockbreeding facilities," Energy, Elsevier, vol. 88(C), pages 821-836.
    3. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2015. "Ground energy balance for borehole heat exchangers: Vertical fluxes, groundwater and storage," Renewable Energy, Elsevier, vol. 83(C), pages 1341-1351.
    4. Yoon, Seok & Lee, Seung-Rae & Go, Gyu-Hyun, 2014. "A numerical and experimental approach to the estimation of borehole thermal resistance in ground heat exchangers," Energy, Elsevier, vol. 71(C), pages 547-555.
    5. Bayer, Peter & de Paly, Michael & Beck, Markus, 2014. "Strategic optimization of borehole heat exchanger field for seasonal geothermal heating and cooling," Applied Energy, Elsevier, vol. 136(C), pages 445-453.
    6. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    7. Atam, Ercan & Schulte, Daniel Otto & Arteconi, Alessia & Sass, Ingo & Helsen, Lieve, 2018. "Control-oriented modeling of geothermal borefield thermal dynamics through Hammerstein-Wiener models," Renewable Energy, Elsevier, vol. 120(C), pages 468-477.
    8. Retkowski, Waldemar & Ziefle, Gesa & Thöming, Jorg, 2015. "Evaluation of different heat extraction strategies for shallow vertical ground-source heat pump systems," Applied Energy, Elsevier, vol. 149(C), pages 259-271.
    9. Tissen, Carolin & Menberg, Kathrin & Benz, Susanne A. & Bayer, Peter & Steiner, Cornelia & Götzl, Gregor & Blum, Philipp, 2021. "Identifying key locations for shallow geothermal use in Vienna," Renewable Energy, Elsevier, vol. 167(C), pages 1-19.
    10. Park, Seung-Hoon & Jang, Yong-Sung & Kim, Eui-Jong, 2018. "Using duct storage (DST) model for irregular arrangements of borehole heat exchangers," Energy, Elsevier, vol. 142(C), pages 851-861.
    11. Hähnlein, Stefanie & Bayer, Peter & Ferguson, Grant & Blum, Philipp, 2013. "Sustainability and policy for the thermal use of shallow geothermal energy," Energy Policy, Elsevier, vol. 59(C), pages 914-925.
    12. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    13. Loveridge, Fleur & Powrie, William, 2014. "G-Functions for multiple interacting pile heat exchangers," Energy, Elsevier, vol. 64(C), pages 747-757.
    14. Yoon, Seok & Lee, Seung-Rae & Kim, Min-Jun & Kim, Woo-Jin & Kim, Geon-Young & Kim, Kyungsu, 2016. "Evaluation of stainless steel pipe performance as a ground heat exchanger in ground-source heat-pump system," Energy, Elsevier, vol. 113(C), pages 328-337.
    15. Alberdi-Pagola, Maria & Poulsen, Søren Erbs & Jensen, Rasmus Lund & Madsen, Søren, 2020. "A case study of the sizing and optimisation of an energy pile foundation (Rosborg, Denmark)," Renewable Energy, Elsevier, vol. 147(P2), pages 2724-2735.
    16. Daróczy, László & Janiga, Gábor & Thévenin, Dominique, 2014. "Systematic analysis of the heat exchanger arrangement problem using multi-objective genetic optimization," Energy, Elsevier, vol. 65(C), pages 364-373.
    17. Shibin Geng & Yong Li & Xu Han & Huiliang Lian & Hua Zhang, 2016. "Evaluation of Thermal Anomalies in Multi-Boreholes Field Considering the Effects of Groundwater Flow," Sustainability, MDPI, vol. 8(6), pages 1-19, June.
    18. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2015. "Analytical simulation of groundwater flow and land surface effects on thermal plumes of borehole heat exchangers," Applied Energy, Elsevier, vol. 146(C), pages 421-433.
    19. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2016. "A finite line source model with Cauchy-type top boundary conditions for simulating near surface effects on borehole heat exchangers," Energy, Elsevier, vol. 98(C), pages 50-63.
    20. Halilovic, Smajil & Böttcher, Fabian & Zosseder, Kai & Hamacher, Thomas, 2023. "Optimizing the spatial arrangement of groundwater heat pumps and their well locations," Renewable Energy, Elsevier, vol. 217(C).
    21. Retkowski, Waldemar & Thöming, Jorg, 2014. "Thermoeconomic optimization of vertical ground-source heat pump systems through nonlinear integer programming," Applied Energy, Elsevier, vol. 114(C), pages 492-503.
    22. Jin, Guang & Li, Zheng & Guo, Shaopeng & Wu, Xuan & Wu, Wenfei & Zhang, Kai, 2020. "Thermal performance analysis of multiple borehole heat exchangers in multilayer geotechnical media," Energy, Elsevier, vol. 209(C).
    23. Kindaichi, Sayaka & Nishina, Daisaku, 2018. "Simple index for onsite operation management of ground source heat pump systems in cooling-dominant regions," Renewable Energy, Elsevier, vol. 127(C), pages 182-194.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    2. Bayer, Peter & de Paly, Michael & Beck, Markus, 2014. "Strategic optimization of borehole heat exchanger field for seasonal geothermal heating and cooling," Applied Energy, Elsevier, vol. 136(C), pages 445-453.
    3. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    4. Hu, Jinzhong, 2017. "An improved analytical model for vertical borehole ground heat exchanger with multiple-layer substrates and groundwater flow," Applied Energy, Elsevier, vol. 202(C), pages 537-549.
    5. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2015. "Ground energy balance for borehole heat exchangers: Vertical fluxes, groundwater and storage," Renewable Energy, Elsevier, vol. 83(C), pages 1341-1351.
    6. Bakirci, Kadir & Colak, Derya, 2012. "Effect of a superheating and sub-cooling heat exchanger to the performance of a ground source heat pump system," Energy, Elsevier, vol. 44(1), pages 996-1004.
    7. Sivasakthivel, T. & Murugesan, K. & Thomas, H.R., 2014. "Optimization of operating parameters of ground source heat pump system for space heating and cooling by Taguchi method and utility concept," Applied Energy, Elsevier, vol. 116(C), pages 76-85.
    8. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2014. "A study on energy and CO2 saving potential of ground source heat pump system in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 278-293.
    9. Cui, Yuanlong & Zhu, Jie & Twaha, Ssennoga & Riffat, Saffa, 2018. "A comprehensive review on 2D and 3D models of vertical ground heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 84-114.
    10. Blum, Philipp & Campillo, Gisela & Kölbel, Thomas, 2011. "Techno-economic and spatial analysis of vertical ground source heat pump systems in Germany," Energy, Elsevier, vol. 36(5), pages 3002-3011.
    11. Zhou, Xuezhi & Gao, Qing & Chen, Xiangliang & Yan, Yuying & Spitler, Jeffrey D., 2015. "Developmental status and challenges of GWHP and ATES in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 973-985.
    12. Tsagarakis, Konstantinos P. & Efthymiou, Loukia & Michopoulos, Apostolos & Mavragani, Amaryllis & Anđelković, Aleksandar S. & Antolini, Francesco & Bacic, Mario & Bajare, Diana & Baralis, Matteo & Bog, 2020. "A review of the legal framework in shallow geothermal energy in selected European countries: Need for guidelines," Renewable Energy, Elsevier, vol. 147(P2), pages 2556-2571.
    13. Karytsas, Spyridon & Choropanitis, Ioannis, 2017. "Barriers against and actions towards renewable energy technologies diffusion: A Principal Component Analysis for residential ground source heat pump (GSHP) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 252-271.
    14. Jin, Guang & Li, Zheng & Guo, Shaopeng & Wu, Xuan & Wu, Wenfei & Zhang, Kai, 2020. "Thermal performance analysis of multiple borehole heat exchangers in multilayer geotechnical media," Energy, Elsevier, vol. 209(C).
    15. Bakirci, Kadir & Ozyurt, Omer & Comakli, Kemal & Comakli, Omer, 2011. "Energy analysis of a solar-ground source heat pump system with vertical closed-loop for heating applications," Energy, Elsevier, vol. 36(5), pages 3224-3232.
    16. Yu, X. & Wang, R.Z. & Zhai, X.Q., 2011. "Year round experimental study on a constant temperature and humidity air-conditioning system driven by ground source heat pump," Energy, Elsevier, vol. 36(2), pages 1309-1318.
    17. Shim, B.O. & Park, C.-H., 2013. "Ground thermal conductivity for (ground source heat pumps) GSHPs in Korea," Energy, Elsevier, vol. 56(C), pages 167-174.
    18. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2016. "A finite line source model with Cauchy-type top boundary conditions for simulating near surface effects on borehole heat exchangers," Energy, Elsevier, vol. 98(C), pages 50-63.
    19. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    20. Aranzabal, Nordin & Martos, Julio & Steger, Hagen & Blum, Philipp & Soret, Jesús, 2019. "Temperature measurements along a vertical borehole heat exchanger: A method comparison," Renewable Energy, Elsevier, vol. 143(C), pages 1247-1258.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:49:y:2013:i:c:p:434-443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.