IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v116y2014icp76-85.html
   My bibliography  Save this article

Optimization of operating parameters of ground source heat pump system for space heating and cooling by Taguchi method and utility concept

Author

Listed:
  • Sivasakthivel, T.
  • Murugesan, K.
  • Thomas, H.R.

Abstract

Use of ground source energy for space heating applications through Ground Source Heat pump (GSHP) has been established as an efficient thermodynamic process. The electricity input to the GSHP can be reduced by increasing the COP of the system. However, the COP of a GSHP system will be different for heating and cooling mode operations. Hence in order to reduce the electricity input to the GSHP, an optimum value of COP has to be determined when GSHP is operated in both heating and cooling modes. In the present research, a methodology is proposed to optimize the operating parameters of a GSHP system which will operate on both heating and cooling modes. Condenser inlet temperature, condenser outlet temperature, dryness fraction at evaporator inlet and evaporator outlet temperature are considered as the influencing parameters of the heat pump. Optimization of these parameters for only heating or only cooling mode operation is achieved by employing Taguchi method for three level variations of the above parameters using an L9 (34) orthogonal array. Higher the better concept has been used to get a higher COP. A computer program in FORTAN has been developed to carry out the computations and the results have been analyzed for the optimum conditions using Signal-to-Noise (SN) ratio and Analysis Of Variance (ANOVA) method. Based on this analysis, the maximum COP for only heating and only cooling operation are obtained as 4.25 and 3.32 respectively. By making use of the utility concept both the higher values of COP obtained for heating and cooling modes are optimized to get a single optimum COP for heating and cooling modes. A single optimum COP value of 3.92 has been obtained for both space heating and cooling operations.

Suggested Citation

  • Sivasakthivel, T. & Murugesan, K. & Thomas, H.R., 2014. "Optimization of operating parameters of ground source heat pump system for space heating and cooling by Taguchi method and utility concept," Applied Energy, Elsevier, vol. 116(C), pages 76-85.
  • Handle: RePEc:eee:appene:v:116:y:2014:i:c:p:76-85
    DOI: 10.1016/j.apenergy.2013.10.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913009574
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.10.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aikins, Kojo Atta & Choi, Jong Min, 2012. "Current status of the performance of GSHP (ground source heat pump) units in the Republic of Korea," Energy, Elsevier, vol. 47(1), pages 77-82.
    2. Bakirci, Kadir, 2010. "Evaluation of the performance of a ground-source heat-pump system with series GHE (ground heat exchanger) in the cold climate region," Energy, Elsevier, vol. 35(7), pages 3088-3096.
    3. Montagud, Carla & Corberán, José Miguel & Ruiz-Calvo, Félix, 2013. "Experimental and modeling analysis of a ground source heat pump system," Applied Energy, Elsevier, vol. 109(C), pages 328-336.
    4. Gang, Wenjie & Wang, Jinbo, 2013. "Predictive ANN models of ground heat exchanger for the control of hybrid ground source heat pump systems," Applied Energy, Elsevier, vol. 112(C), pages 1146-1153.
    5. Bi, Yuehong & Guo, Tingwei & Zhang, Liang & Chen, Lingen, 2004. "Solar and ground source heat-pump system," Applied Energy, Elsevier, vol. 78(2), pages 231-245, June.
    6. Mustafa Omer, Abdeen, 2008. "Ground-source heat pumps systems and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 344-371, February.
    7. Hwang, Yujin & Lee, Jae-Keun & Jeong, Young-Man & Koo, Kyung-Min & Lee, Dong-Hyuk & Kim, In-Kyu & Jin, Sim-Won & Kim, Soo H., 2009. "Cooling performance of a vertical ground-coupled heat pump system installed in a school building," Renewable Energy, Elsevier, vol. 34(3), pages 578-582.
    8. Jeon, Jongug & Lee, Sunil & Hong, Daehie & Kim, Yongchan, 2010. "Performance evaluation and modeling of a hybrid cooling system combining a screw water chiller with a ground source heat pump in a building," Energy, Elsevier, vol. 35(5), pages 2006-2012.
    9. Kjellsson, Elisabeth & Hellström, Göran & Perers, Bengt, 2010. "Optimization of systems with the combination of ground-source heat pump and solar collectors in dwellings," Energy, Elsevier, vol. 35(6), pages 2667-2673.
    10. Wood, Christopher J. & Liu, Hao & Riffat, Saffa B., 2010. "An investigation of the heat pump performance and ground temperature of a piled foundation heat exchanger system for a residential building," Energy, Elsevier, vol. 35(12), pages 4932-4940.
    11. Yu, X. & Wang, R.Z. & Zhai, X.Q., 2011. "Year round experimental study on a constant temperature and humidity air-conditioning system driven by ground source heat pump," Energy, Elsevier, vol. 36(2), pages 1309-1318.
    12. Wu, Wei & Wang, Baolong & You, Tian & Shi, Wenxing & Li, Xianting, 2013. "A potential solution for thermal imbalance of ground source heat pump systems in cold regions: Ground source absorption heat pump," Renewable Energy, Elsevier, vol. 59(C), pages 39-48.
    13. Esen, Hikmet & Inalli, Mustafa & Sengur, Abdulkadir & Esen, Mehmet, 2008. "Modeling a ground-coupled heat pump system by a support vector machine," Renewable Energy, Elsevier, vol. 33(8), pages 1814-1823.
    14. Fan, Rui & Jiang, Yiqiang & Yao, Yang & Ma, Zuiliang, 2008. "Theoretical study on the performance of an integrated ground-source heat pump system in a whole year," Energy, Elsevier, vol. 33(11), pages 1671-1679.
    15. Bi, Yuehong & Wang, Xinhong & Liu, Yun & Zhang, Hua & Chen, Lingen, 2009. "Comprehensive exergy analysis of a ground-source heat pump system for both building heating and cooling modes," Applied Energy, Elsevier, vol. 86(12), pages 2560-2565, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    2. Bakirci, Kadir & Colak, Derya, 2012. "Effect of a superheating and sub-cooling heat exchanger to the performance of a ground source heat pump system," Energy, Elsevier, vol. 44(1), pages 996-1004.
    3. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    4. Zhai, X.Q. & Qu, M. & Yu, X. & Yang, Y. & Wang, R.Z., 2011. "A review for the applications and integrated approaches of ground-coupled heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3133-3140, August.
    5. Bakirci, Kadir & Ozyurt, Omer & Comakli, Kemal & Comakli, Omer, 2011. "Energy analysis of a solar-ground source heat pump system with vertical closed-loop for heating applications," Energy, Elsevier, vol. 36(5), pages 3224-3232.
    6. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2014. "A study on energy and CO2 saving potential of ground source heat pump system in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 278-293.
    7. Florides, G.A. & Pouloupatis, P.D. & Kalogirou, S. & Messaritis, V. & Panayides, I. & Zomeni, Z. & Partasides, G. & Lizides, A. & Sophocleous, E. & Koutsoumpas, K., 2011. "The geothermal characteristics of the ground and the potential of using ground coupled heat pumps in Cyprus," Energy, Elsevier, vol. 36(8), pages 5027-5036.
    8. Reda, Francesco & Arcuri, Natale & Loiacono, Pasquale & Mazzeo, Domenico, 2015. "Energy assessment of solar technologies coupled with a ground source heat pump system for residential energy supply in Southern European climates," Energy, Elsevier, vol. 91(C), pages 294-305.
    9. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2014. "Optimization of ground heat exchanger parameters of ground source heat pump system for space heating applications," Energy, Elsevier, vol. 78(C), pages 573-586.
    10. Michopoulos, A. & Zachariadis, T. & Kyriakis, N., 2013. "Operation characteristics and experience of a ground source heat pump system with a vertical ground heat exchanger," Energy, Elsevier, vol. 51(C), pages 349-357.
    11. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    12. Qi, Zishu & Gao, Qing & Liu, Yan & Yan, Y.Y. & Spitler, Jeffrey D., 2014. "Status and development of hybrid energy systems from hybrid ground source heat pump in China and other countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 37-51.
    13. You, Tian & Wu, Wei & Shi, Wenxing & Wang, Baolong & Li, Xianting, 2016. "An overview of the problems and solutions of soil thermal imbalance of ground-coupled heat pumps in cold regions," Applied Energy, Elsevier, vol. 177(C), pages 515-536.
    14. Cai, Baoping & Liu, Yonghong & Fan, Qian & Zhang, Yunwei & Liu, Zengkai & Yu, Shilin & Ji, Renjie, 2014. "Multi-source information fusion based fault diagnosis of ground-source heat pump using Bayesian network," Applied Energy, Elsevier, vol. 114(C), pages 1-9.
    15. Reda, Francesco, 2015. "Long term performance of different SAGSHP solutions for residential energy supply in Finland," Applied Energy, Elsevier, vol. 144(C), pages 31-50.
    16. Gang, Wenjie & Wang, Jinbo & Wang, Shengwei, 2014. "Performance analysis of hybrid ground source heat pump systems based on ANN predictive control," Applied Energy, Elsevier, vol. 136(C), pages 1138-1144.
    17. Beck, Markus & Bayer, Peter & de Paly, Michael & Hecht-Méndez, Jozsef & Zell, Andreas, 2013. "Geometric arrangement and operation mode adjustment in low-enthalpy geothermal borehole fields for heating," Energy, Elsevier, vol. 49(C), pages 434-443.
    18. Jimin Kim & Taehoon Hong & Myeongsoo Chae & Choongwan Koo & Jaemin Jeong, 2015. "An Environmental and Economic Assessment for Selecting the Optimal Ground Heat Exchanger by Considering the Entering Water Temperature," Energies, MDPI, vol. 8(8), pages 1-25, July.
    19. Karytsas, Spyridon & Choropanitis, Ioannis, 2017. "Barriers against and actions towards renewable energy technologies diffusion: A Principal Component Analysis for residential ground source heat pump (GSHP) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 252-271.
    20. Bakirci, Kadir, 2010. "Evaluation of the performance of a ground-source heat-pump system with series GHE (ground heat exchanger) in the cold climate region," Energy, Elsevier, vol. 35(7), pages 3088-3096.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:116:y:2014:i:c:p:76-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.