IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v67y2014icp499-507.html
   My bibliography  Save this article

From shale gas to renewable energy based transportation solutions

Author

Listed:
  • Mallapragada, Dharik S.
  • Duan, Gang
  • Agrawal, Rakesh

Abstract

We present an energy roadmap for the US light duty vehicle (LDV) sector that efficiently utilizes natural gas (NG) and transitions to renewable energy and carbon sources as they become economical. We use well-to-wheels (WTW) efficiency to compare alternative NG transportation pathways. If internal combustion engine vehicles (ICEVs) remain prevalent, then compressed natural gas (CNG) is the favored fuel. Among electric powertrains, centralized electricity generation with battery electric vehicle (BEV) is more efficient than on-board generation with fuel-cell vehicles (FCV). Plug-in hybrid electric vehicles (PHEVs) balance driving range against WTW efficiency, and provide flexibility in sourcing electricity from different energy sources. Despite these efficient WTW pathways, supplying NG for the LDV sector is estimated to decrease the lifetime of current US NG reserves to about 60 years. Beyond this period, compressed methane derived from biomass can replace CNG, and utilize the would-be developed CNG infrastructure. The LDV biomass requirement depends on the biomass to methane carbon conversion and battery storage capacity of CNG PHEVs. Converting biomass to methane using solar heat/H2 leads to ~65% lower LDV biomass requirement compared to standalone processes recovering ~30% biomass carbon as methane. The resulting biomass amounts compare favorably with future US biomass supply projections.

Suggested Citation

  • Mallapragada, Dharik S. & Duan, Gang & Agrawal, Rakesh, 2014. "From shale gas to renewable energy based transportation solutions," Energy Policy, Elsevier, vol. 67(C), pages 499-507.
  • Handle: RePEc:eee:enepol:v:67:y:2014:i:c:p:499-507
    DOI: 10.1016/j.enpol.2013.12.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513013207
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.12.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peterson, Scott B. & Michalek, Jeremy J., 2013. "Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption," Energy Policy, Elsevier, vol. 52(C), pages 429-438.
    2. Radu Dan Rugescu (ed.), 2010. "Solar Energy," Books, IntechOpen, number 621, January-J.
    3. Hekkert, Marko P. & Hendriks, Franka H. J. F. & Faaij, Andre P. C. & Neelis, Maarten L., 2005. "Natural gas as an alternative to crude oil in automotive fuel chains well-to-wheel analysis and transition strategy development," Energy Policy, Elsevier, vol. 33(5), pages 579-594, March.
    4. Yeh, Sonia, 2007. "An empirical analysis on the adoption of alternative fuel vehicles: The case of natural gas vehicles," Energy Policy, Elsevier, vol. 35(11), pages 5865-5875, November.
    5. Kromer, Matthew A. & Bandivadekar, Anup & Evans, Christopher, 2010. "Long-term greenhouse gas emission and petroleum reduction goals: Evolutionary pathways for the light-duty vehicle sector," Energy, Elsevier, vol. 35(1), pages 387-397.
    6. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    7. Martino Tran & David Banister & Justin D. K. Bishop & Malcolm D. McCulloch, 2012. "Realizing the electric-vehicle revolution," Nature Climate Change, Nature, vol. 2(5), pages 328-333, May.
    8. Yeh, Sonia, 2007. "An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles," Institute of Transportation Studies, Working Paper Series qt2k09h787, Institute of Transportation Studies, UC Davis.
    9. Åhman, Max, 2010. "Biomethane in the transport sector--An appraisal of the forgotten option," Energy Policy, Elsevier, vol. 38(1), pages 208-217, January.
    10. Yeh, Sonia, 2007. "An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles," Institute of Transportation Studies, Working Paper Series qt92h7g194, Institute of Transportation Studies, UC Davis.
    11. Bastani, Parisa & Heywood, John B. & Hope, Chris, 2012. "The effect of uncertainty on US transport-related GHG emissions and fuel consumption out to 2050," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 517-548.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gençer, Emre & Agrawal, Rakesh, 2016. "A commentary on the US policies for efficient large scale renewable energy storage systems: Focus on carbon storage cycles," Energy Policy, Elsevier, vol. 88(C), pages 477-484.
    2. Khorramfar, Rahman & Mallapragada, Dharik & Amin, Saurabh, 2024. "Electric-gas infrastructure planning for deep decarbonization of energy systems," Applied Energy, Elsevier, vol. 354(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malakoutirad, Mohammad & Bradley, Thomas H. & Hagen, Chris, 2015. "Design considerations for an engine-integral reciprocating natural gas compressor," Applied Energy, Elsevier, vol. 156(C), pages 129-137.
    2. Tianbo Wang & Lanchun Zhang & Qian Chen, 2020. "Effect of Valve Opening Manner and Sealing Method on the Steady Injection Characteristic of Gas Fuel Injector," Energies, MDPI, vol. 13(6), pages 1-12, March.
    3. Liang, Yong-Liang & Guo, Chen-Xian & Li, Ke-Jun & Li, Ming-Yang, 2021. "Economic scheduling of compressed natural gas main station considering critical peak pricing," Applied Energy, Elsevier, vol. 292(C).
    4. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations," Energy Policy, Elsevier, vol. 38(1), pages 406-418, January.
    5. Larizzatti Zacharias, Luis Guilherme & Antunes Costa de Andrade, Ana Clara & Guichet, Xavier & Mouette, Dominique & Peyerl, Drielli, 2022. "Natural gas as a vehicular fuel in Brazil: Barriers and lessons to learn," Energy Policy, Elsevier, vol. 167(C).
    6. Yanfei Li & Robert Kochhan, 2017. "Policies And Business Models For The Electric Mobility Revolution: The Case Study On Singapore," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 62(05), pages 1195-1222, December.
    7. Arteconi, A. & Polonara, F., 2013. "LNG as vehicle fuel and the problem of supply: The Italian case study," Energy Policy, Elsevier, vol. 62(C), pages 503-512.
    8. Sehatpour, Mohammad-Hadi & Kazemi, Aliyeh & Sehatpour, Hesam-eddin, 2017. "Evaluation of alternative fuels for light-duty vehicles in Iran using a multi-criteria approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 295-310.
    9. Waller, Michael G. & Williams, Eric D. & Matteson, Schuyler W. & Trabold, Thomas A., 2014. "Current and theoretical maximum well-to-wheels exergy efficiency of options to power vehicles with natural gas," Applied Energy, Elsevier, vol. 127(C), pages 55-63.
    10. Sierzchula, William & Bakker, Sjoerd & Maat, Kees & van Wee, Bert, 2014. "The influence of financial incentives and other socio-economic factors on electric vehicle adoption," Energy Policy, Elsevier, vol. 68(C), pages 183-194.
    11. Thamsiriroj, T. & Smyth, H. & Murphy, J.D., 2011. "A roadmap for the introduction of gaseous transport fuel: A case study for renewable natural gas in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4642-4651.
    12. Arteconi, A. & Brandoni, C. & Evangelista, D. & Polonara, F., 2010. "Life-cycle greenhouse gas analysis of LNG as a heavy vehicle fuel in Europe," Applied Energy, Elsevier, vol. 87(6), pages 2005-2013, June.
    13. Wang, Hongxia & Fang, Hong & Yu, Xueying & Wang, Ke, 2015. "Development of natural gas vehicles in China: An assessment of enabling factors and barriers," Energy Policy, Elsevier, vol. 85(C), pages 80-93.
    14. Petschnig, Martin & Heidenreich, Sven & Spieth, Patrick, 2014. "Innovative alternatives take action – Investigating determinants of alternative fuel vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 68-83.
    15. Akoh Fabien Yao & Maxime Sèbe & Laura Recuero Virto & Abdelhak Nassiri & Hervé Dumez, 2024. "The effect of LNG bunkering on port competitiveness using multilevel data analysis [L'effet du soutage par GNL sur la compétitivité des ports à l'aide de l'analyse de données à plusieurs niveaux]," Post-Print hal-04611804, HAL.
    16. Kagiri, Charles & Wanjiru, Evan M. & Zhang, Lijun & Xia, Xiaohua, 2018. "Optimized response to electricity time-of-use tariff of a compressed natural gas fuelling station," Applied Energy, Elsevier, vol. 222(C), pages 244-256.
    17. Nithin Isaac & Akshay Kumar Saha, 2022. "Predicting Vehicle Refuelling Trips through Generalised Poisson Modelling," Energies, MDPI, vol. 15(18), pages 1-18, September.
    18. Ogunlowo, Olufemi O. & Bristow, Abigail L. & Sohail, M., 2017. "A stakeholder analysis of the automotive industry's use of compressed natural gas in Nigeria," Transport Policy, Elsevier, vol. 53(C), pages 58-69.
    19. Zhang, Yong & Yu, Yifeng & Zou, Bai, 2011. "Analyzing public awareness and acceptance of alternative fuel vehicles in China: The case of EV," Energy Policy, Elsevier, vol. 39(11), pages 7015-7024.
    20. Ackah, Ishmael & TETTEH, ELIZABETH NARKIE, 2016. "Determinants of autogas demand among Taxi Drivers in rural Ghana," MPRA Paper 74242, University Library of Munich, Germany.

    More about this item

    Keywords

    Biomass; PHEV; Well-to-wheels;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:67:y:2014:i:c:p:499-507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.