IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v115y2014icp17-24.html
   My bibliography  Save this article

A novel process for small-scale pipeline natural gas liquefaction

Author

Listed:
  • He, T.B.
  • Ju, Y.L.

Abstract

A novel process for small-scale pipeline natural gas liquefaction is designed and presented. The novel process can utilize the pressure exergy of the pipeline to liquefy a part of natural gas without any energy consumption. The thermodynamic analysis including mass, energy balance and exergy analysis are adopted in this paper. The liquefaction rate and exergy utilization rate are chosen as the objective functions. Several key parameters are optimized to approach the maximum liquefaction rate and exergy utilization rate. The optimization results showed that the maximum liquefaction rate is 12.61% and the maximum exergy utilization rate is 0.1961. What is more, the economic performances of the process are also discussed and compared by using the maximum liquefaction rate and exergy utilization rate as indexes. In conclusion, the novel process is suitable for pressure exergy utilization due to its simplicity, zero energy consumption and short payback period.

Suggested Citation

  • He, T.B. & Ju, Y.L., 2014. "A novel process for small-scale pipeline natural gas liquefaction," Applied Energy, Elsevier, vol. 115(C), pages 17-24.
  • Handle: RePEc:eee:appene:v:115:y:2014:i:c:p:17-24
    DOI: 10.1016/j.apenergy.2013.11.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913009094
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.11.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Ting & Lin, Wensheng & Gu, Anzhong & Gu, Min, 2010. "Coalbed methane liquefaction adopting a nitrogen expansion process with propane pre-cooling," Applied Energy, Elsevier, vol. 87(7), pages 2142-2147, July.
    2. Kostowski, Wojciech J. & Usón, Sergio, 2013. "Thermoeconomic assessment of a natural gas expansion system integrated with a co-generation unit," Applied Energy, Elsevier, vol. 101(C), pages 58-66.
    3. Kumar, Satish & Kwon, Hyouk-Tae & Choi, Kwang-Ho & Lim, Wonsub & Cho, Jae Hyun & Tak, Kyungjae & Moon, Il, 2011. "LNG: An eco-friendly cryogenic fuel for sustainable development," Applied Energy, Elsevier, vol. 88(12), pages 4264-4273.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Juwon & Seo, Youngkyun & Chang, Daejun, 2016. "Economic evaluation of a new small-scale LNG supply chain using liquid nitrogen for natural-gas liquefaction," Applied Energy, Elsevier, vol. 182(C), pages 154-163.
    2. Wang, Xucen & Li, Min & Cai, Liuxi & Li, Yun, 2020. "Propane and iso-butane pre-cooled mixed refrigerant liquefaction process for small-scale skid-mounted natural gas liquefaction," Applied Energy, Elsevier, vol. 275(C).
    3. Pajączek, Krzysztof & Kostowski, Wojciech & Stanek, Wojciech, 2020. "Natural gas liquefaction using the high-pressure potential in the gas transmission system," Energy, Elsevier, vol. 202(C).
    4. Li, Chenghao & Zheng, Siyang & Chen, Yufeng & Zeng, Zhiyong, 2021. "Proposal and parametric analysis of an innovative natural gas pressure reduction and liquefaction system for efficient exergy recovery and LNG storage," Energy, Elsevier, vol. 223(C).
    5. Ning, Jinghong & Sun, Zhili & Dong, Qiang & Liu, Xinghua, 2019. "Performance study of supplying cooling load and output power combined cycle using the cold energy of the small scale LNG," Energy, Elsevier, vol. 172(C), pages 36-44.
    6. Uwitonze, Hosanna & Chaniago, Yus Donald & Lim, Hankwon, 2022. "Novel integrated energy-efficient dual-effect single mixed refrigerant and NGLs recovery process for small-scale natural gas processing plant," Energy, Elsevier, vol. 254(PA).
    7. Yao, Sheng & Zhang, Yufeng & Deng, Na & Yu, Xiaohui & Dong, Shengming, 2019. "Performance research on a power generation system using twin-screw expanders for energy recovery at natural gas pressure reduction stations under off-design conditions," Applied Energy, Elsevier, vol. 236(C), pages 1218-1230.
    8. Guo, Hao & Tang, Qixiong & Gong, Maoqiong & Cheng, Kuiwei, 2018. "Optimization of a novel liquefaction process based on Joule–Thomson cycle utilizing high-pressure natural gas exergy by genetic algorithm," Energy, Elsevier, vol. 151(C), pages 696-706.
    9. Yin, Liang & Ju, Yonglin, 2020. "Conceptual design and analysis of a novel process for BOG re-liquefaction combined with absorption refrigeration cycle," Energy, Elsevier, vol. 205(C).
    10. Yao, Sheng & Zhang, Yufeng & Yu, Xiaohui, 2018. "Thermo-economic analysis of a novel power generation system integrating a natural gas expansion plant with a geothermal ORC in Tianjin, China," Energy, Elsevier, vol. 164(C), pages 602-614.
    11. Zhang, Jinrui & Meerman, Hans & Benders, René & Faaij, André, 2020. "Technical and economic optimization of expander-based small-scale natural gas liquefaction processes with absorption precooling cycle," Energy, Elsevier, vol. 191(C).
    12. Ancona, M.A. & Bianchi, M. & Branchini, L. & De Pascale, A. & Melino, F. & Mormile, M. & Palella, M. & Scarponi, L.B., 2018. "Investigation on small-scale low pressure LNG production process," Applied Energy, Elsevier, vol. 227(C), pages 672-685.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Gao & Jiaxin Wang & Maxime Binama & Qian Li & Weihua Cai, 2022. "The Design and Optimization of Natural Gas Liquefaction Processes: A Review," Energies, MDPI, vol. 15(21), pages 1-56, October.
    2. He, Tianbiao & Ju, Yonglin, 2014. "A novel conceptual design of parallel nitrogen expansion liquefaction process for small-scale LNG (liquefied natural gas) plant in skid-mount packages," Energy, Elsevier, vol. 75(C), pages 349-359.
    3. Guo, Hao & Tang, Qixiong & Gong, Maoqiong & Cheng, Kuiwei, 2018. "Optimization of a novel liquefaction process based on Joule–Thomson cycle utilizing high-pressure natural gas exergy by genetic algorithm," Energy, Elsevier, vol. 151(C), pages 696-706.
    4. Ancona, M.A. & Bianchi, M. & Branchini, L. & De Pascale, A. & Melino, F. & Mormile, M. & Palella, M. & Scarponi, L.B., 2018. "Investigation on small-scale low pressure LNG production process," Applied Energy, Elsevier, vol. 227(C), pages 672-685.
    5. Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
    6. Johannes Full & Silja Hohmann & Sonja Ziehn & Edgar Gamero & Tobias Schließ & Hans-Peter Schmid & Robert Miehe & Alexander Sauer, 2023. "Perspectives of Biogas Plants as BECCS Facilities: A Comparative Analysis of Biomethane vs. Biohydrogen Production with Carbon Capture and Storage or Use (CCS/CCU)," Energies, MDPI, vol. 16(13), pages 1-16, June.
    7. Tian, Yafen & Xing, Ziwen & He, Zhilong & Wu, Huagen, 2017. "Modeling and performance analysis of twin-screw steam expander under fluctuating operating conditions in steam pipeline pressure energy recovery applications," Energy, Elsevier, vol. 141(C), pages 692-701.
    8. Duan, Zhongdi & Ren, Tao & Ding, Guoliang & Chen, Jie & Mi, Xiaoguang, 2017. "Liquid-migration based model for predicting the thermal performance of spiral wound heat exchanger for floating LNG," Applied Energy, Elsevier, vol. 206(C), pages 972-982.
    9. Kadhim, Hakim T. & Rona, Aldo, 2018. "Off-design performance of a liquefied natural gas plant with an axial turbine of novel endwall design," Applied Energy, Elsevier, vol. 222(C), pages 830-839.
    10. Qi, Meng & Park, Jinwoo & Kim, Jeongdong & Lee, Inkyu & Moon, Il, 2020. "Advanced integration of LNG regasification power plant with liquid air energy storage: Enhancements in flexibility, safety, and power generation," Applied Energy, Elsevier, vol. 269(C).
    11. Luis F. Villalón-López & Víctor M. Ambriz-Díaz & Carlos Rubio-Maya & Oscar Chávez & Israel Y. Rosas, 2024. "Energy, Exergy, Exergoeconomic Analysis, and Optimization in a Natural Gas Decompression Station with a Vortex Tube and Geothermal Preheating," Sustainability, MDPI, vol. 16(4), pages 1-33, February.
    12. Mofid, Hossein & Jazayeri-Rad, Hooshang & Shahbazian, Mehdi & Fetanat, Abdolvahhab, 2019. "Enhancing the performance of a parallel nitrogen expansion liquefaction process (NELP) using the multi-objective particle swarm optimization (MOPSO) algorithm," Energy, Elsevier, vol. 172(C), pages 286-303.
    13. Lu, Yilin & Xu, Jingxuan & Chen, Xi & Tian, Yafen & Zhang, Hua, 2023. "Design and thermodynamic analysis of an advanced liquid air energy storage system coupled with LNG cold energy, ORCs and natural resources," Energy, Elsevier, vol. 275(C).
    14. Qyyum, Muhammad Abdul & Qadeer, Kinza & Minh, Le Quang & Haider, Junaid & Lee, Moonyong, 2019. "Nitrogen self-recuperation expansion-based process for offshore coproduction of liquefied natural gas, liquefied petroleum gas, and pentane plus," Applied Energy, Elsevier, vol. 235(C), pages 247-257.
    15. Guoqiang Li & Yuting Wu & Yeqiang Zhang & Ruiping Zhi & Jingfu Wang & Chongfang Ma, 2016. "Performance Study on a Single-Screw Expander for a Small-Scale Pressure Recovery System," Energies, MDPI, vol. 10(1), pages 1-14, December.
    16. Atienza-Márquez, Antonio & Bruno, Joan Carles & Akisawa, Atsushi & Coronas, Alberto, 2019. "Performance analysis of a combined cold and power (CCP) system with exergy recovery from LNG-regasification," Energy, Elsevier, vol. 183(C), pages 448-461.
    17. Duan, Zhongdi & Wang, Jianhu & Yuan, Yuchao & Tang, Wenyong & Xue, Hongxiang, 2023. "Near-wall thermal regulation for cryogenic storage by adsorbent coating: Modelling and pore-scale investigation," Applied Energy, Elsevier, vol. 349(C).
    18. Chen, Bingbing & Sun, Huiru & Zhou, Hang & Yang, Mingjun & Wang, Dayong, 2019. "Effects of pressure and sea water flow on natural gas hydrate production characteristics in marine sediment," Applied Energy, Elsevier, vol. 238(C), pages 274-283.
    19. Davide Borelli & Francesco Devia & Ermanno Lo Cascio & Corrado Schenone & Alessandro Spoladore, 2016. "Combined Production and Conversion of Energy in an Urban Integrated System," Energies, MDPI, vol. 9(10), pages 1-17, October.
    20. Davide Borelli & Francesco Devia & Corrado Schenone & Federico Silenzi & Luca A. Tagliafico, 2021. "Dynamic Modelling of LNG Powered Combined Energy Systems in Port Areas," Energies, MDPI, vol. 14(12), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:115:y:2014:i:c:p:17-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.