IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v75y2014icp349-359.html
   My bibliography  Save this article

A novel conceptual design of parallel nitrogen expansion liquefaction process for small-scale LNG (liquefied natural gas) plant in skid-mount packages

Author

Listed:
  • He, Tianbiao
  • Ju, Yonglin

Abstract

The utilization of unconventional natural gas is still a great challenge for China due to its distribution locations and small reserves. Thus, liquefying the unconventional natural gas by using small-scale LNG plant in skid-mount packages is a good choice with great economic benefits. A novel conceptual design of parallel nitrogen expansion liquefaction process for small-scale plant in skid-mount packages has been proposed. It first designs a process configuration. Then, thermodynamic analysis of the process is conducted. Next, an optimization model with genetic algorithm method is developed to optimize the process. Finally, the flexibilities of the process are tested by two different feed gases. In conclusion, the proposed parallel nitrogen expansion liquefaction process can be used in small-scale LNG plant in skid-mount packages with high exergy efficiency and great economic benefits.

Suggested Citation

  • He, Tianbiao & Ju, Yonglin, 2014. "A novel conceptual design of parallel nitrogen expansion liquefaction process for small-scale LNG (liquefied natural gas) plant in skid-mount packages," Energy, Elsevier, vol. 75(C), pages 349-359.
  • Handle: RePEc:eee:energy:v:75:y:2014:i:c:p:349-359
    DOI: 10.1016/j.energy.2014.07.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214009177
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.07.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Ting & Lin, Wensheng & Gu, Anzhong & Gu, Min, 2010. "Coalbed methane liquefaction adopting a nitrogen expansion process with propane pre-cooling," Applied Energy, Elsevier, vol. 87(7), pages 2142-2147, July.
    2. Lin, Wensheng & Zhang, Na & Gu, Anzhong, 2010. "LNG (liquefied natural gas): A necessary part in China's future energy infrastructure," Energy, Elsevier, vol. 35(11), pages 4383-4391.
    3. Mortazavi, A. & Somers, C. & Hwang, Y. & Radermacher, R. & Rodgers, P. & Al-Hashimi, S., 2012. "Performance enhancement of propane pre-cooled mixed refrigerant LNG plant," Applied Energy, Elsevier, vol. 93(C), pages 125-131.
    4. Kumar, Satish & Kwon, Hyouk-Tae & Choi, Kwang-Ho & Lim, Wonsub & Cho, Jae Hyun & Tak, Kyungjae & Moon, Il, 2011. "LNG: An eco-friendly cryogenic fuel for sustainable development," Applied Energy, Elsevier, vol. 88(12), pages 4264-4273.
    5. Mokarizadeh Haghighi Shirazi, M. & Mowla, D., 2010. "Energy optimization for liquefaction process of natural gas in peak shaving plant," Energy, Elsevier, vol. 35(7), pages 2878-2885.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiong, Xiaojun & Lin, Wensheng & Gu, Anzhong, 2015. "Integration of CO2 cryogenic removal with a natural gas pressurized liquefaction process using gas expansion refrigeration," Energy, Elsevier, vol. 93(P1), pages 1-9.
    2. He, Tianbiao & Liu, Zuming & Ju, Yonglin & Parvez, Ashak Mahmud, 2019. "A comprehensive optimization and comparison of modified single mixed refrigerant and parallel nitrogen expansion liquefaction process for small-scale mobile LNG plant," Energy, Elsevier, vol. 167(C), pages 1-12.
    3. Tak, Kyungjae & Choi, Jiwon & Ryu, Jun-Hyung & Moon, Il, 2020. "Sensitivity analysis of effects of design parameters and decision variables on optimization of natural gas liquefaction process," Energy, Elsevier, vol. 206(C).
    4. Lei Gao & Jiaxin Wang & Maxime Binama & Qian Li & Weihua Cai, 2022. "The Design and Optimization of Natural Gas Liquefaction Processes: A Review," Energies, MDPI, vol. 15(21), pages 1-56, October.
    5. Son, Heechang & Austbø, Bjørn & Gundersen, Truls & Hwang, Jihyun & Lim, Youngsub, 2022. "Techno-economic versus energy optimization of natural gas liquefaction processes with different heat exchanger technologies," Energy, Elsevier, vol. 245(C).
    6. Ancona, M.A. & Bianchi, M. & Branchini, L. & De Pascale, A. & Melino, F. & Mormile, M. & Palella, M. & Scarponi, L.B., 2018. "Investigation on small-scale low pressure LNG production process," Applied Energy, Elsevier, vol. 227(C), pages 672-685.
    7. Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
    8. Ghorbani, Bahram & Mehrpooya, Mehdi & Ghasemzadeh, Hossein, 2018. "Investigation of a hybrid water desalination, oxy-fuel power generation and CO2 liquefaction process," Energy, Elsevier, vol. 158(C), pages 1105-1119.
    9. Duan, Zhongdi & Ren, Tao & Ding, Guoliang & Chen, Jie & Mi, Xiaoguang, 2017. "Liquid-migration based model for predicting the thermal performance of spiral wound heat exchanger for floating LNG," Applied Energy, Elsevier, vol. 206(C), pages 972-982.
    10. Mofid, Hossein & Jazayeri-Rad, Hooshang & Shahbazian, Mehdi & Fetanat, Abdolvahhab, 2019. "Enhancing the performance of a parallel nitrogen expansion liquefaction process (NELP) using the multi-objective particle swarm optimization (MOPSO) algorithm," Energy, Elsevier, vol. 172(C), pages 286-303.
    11. Vladimír Hönig & Petr Prochazka & Michal Obergruber & Luboš Smutka & Viera Kučerová, 2019. "Economic and Technological Analysis of Commercial LNG Production in the EU," Energies, MDPI, vol. 12(8), pages 1-17, April.
    12. Seo, Suwon & Han, Sangheon & Lee, Sangick & Chang, Daejun, 2016. "A pump-free boosting system and its application to liquefied natural gas supply for large ships," Energy, Elsevier, vol. 105(C), pages 70-79.
    13. He, Tianbiao & Ju, Yonglin, 2015. "Optimal synthesis of expansion liquefaction cycle for distributed-scale LNG (liquefied natural gas) plant," Energy, Elsevier, vol. 88(C), pages 268-280.
    14. Wang, Xucen & Li, Min & Cai, Liuxi & Li, Yun, 2020. "Propane and iso-butane pre-cooled mixed refrigerant liquefaction process for small-scale skid-mounted natural gas liquefaction," Applied Energy, Elsevier, vol. 275(C).
    15. Lin, Wensheng & Xiong, Xiaojun & Gu, Anzhong, 2018. "Optimization and thermodynamic analysis of a cascade PLNG (pressurized liquefied natural gas) process with CO2 cryogenic removal," Energy, Elsevier, vol. 161(C), pages 870-877.
    16. Mortazavi, Amir & Alabdulkarem, Abdullah & Hwang, Yunho & Radermacher, Reinhard, 2016. "Development of a robust refrigerant mixture for liquefaction of highly uncertain natural gas compositions," Energy, Elsevier, vol. 113(C), pages 1042-1050.
    17. He, T.B. & Ju, Y.L., 2014. "A novel process for small-scale pipeline natural gas liquefaction," Applied Energy, Elsevier, vol. 115(C), pages 17-24.
    18. He, Tianbiao & Chong, Zheng Rong & Zheng, Junjie & Ju, Yonglin & Linga, Praveen, 2019. "LNG cold energy utilization: Prospects and challenges," Energy, Elsevier, vol. 170(C), pages 557-568.
    19. Li, Yong & Xie, Gongnan & Sunden, Bengt & Lu, Yuanwei & Wu, Yuting & Qin, Jiang, 2018. "Performance study on a single-screw compressor for a portable natural gas liquefaction process," Energy, Elsevier, vol. 148(C), pages 1032-1045.
    20. Guo, Hao & Tang, Qixiong & Gong, Maoqiong & Cheng, Kuiwei, 2018. "Optimization of a novel liquefaction process based on Joule–Thomson cycle utilizing high-pressure natural gas exergy by genetic algorithm," Energy, Elsevier, vol. 151(C), pages 696-706.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:75:y:2014:i:c:p:349-359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.