IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v112y2013icp737-746.html
   My bibliography  Save this article

Evaluation of geothermal energy in desalination by vacuum membrane distillation

Author

Listed:
  • Sarbatly, Rosalam
  • Chiam, Chel-Ken

Abstract

This paper presents the energy evaluation of the cross-flow vacuum membrane distillation (VMD) for three types of lab-fabricated polyvinylidene fluoride (PVDF) membranes and the commercial Westran S PVDF membrane. Membranes with the effective area 23.5cm2 are tested with distilled water and geothermal water as the feed solutions. Results show that the membrane porosity controlled the flux through the fabricated membranes and the commercial membrane. The commercial membrane with porosity of approximately 76.5%, which was the most porous among the tested membranes, gave the highest flux at 9.28kg/m2 h under the optimum conditions of 33.2L/h feed flow rate and 30kPa downstream pressure. The corresponding specific energy consumption was 66.03kW/kgh−1 when distilled water was examined. Heating energy of 87–89kW/kgh−1, which is approximately 95% of the total energy consumption, could be saved when the warm geothermal water is fed directly into the VMD system. The water produced meets the drinking water quality with the TDS varying between 102 and 119ppm, thus the geothermal water desalination using the VMD system to produce the drinking water is satisfactory. An economic analysis for a 20,000m3/d VMD desalination plant finds that the water production costs are $0.50/m3 and $1.22/m3 respectively for the plant operated with and without geothermal energy (GE). Compare to the plant without GE utilisation, the water production costs of the plant operated with GE are less than $0.50/m3 that is at least $0.72/m3 or approximately 59% in cost saving when the water fluxes are larger than 6.6kg/m2h. The specific membrane cost reduced from $0.058/m3 to $0.035/m3 when the membrane life extended from 3 to 5years.

Suggested Citation

  • Sarbatly, Rosalam & Chiam, Chel-Ken, 2013. "Evaluation of geothermal energy in desalination by vacuum membrane distillation," Applied Energy, Elsevier, vol. 112(C), pages 737-746.
  • Handle: RePEc:eee:appene:v:112:y:2013:i:c:p:737-746
    DOI: 10.1016/j.apenergy.2012.12.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912009105
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.12.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gude, Veera Gnaneswar & Nirmalakhandan, Nagamany & Deng, Shuguang & Maganti, Anand, 2012. "Low temperature desalination using solar collectors augmented by thermal energy storage," Applied Energy, Elsevier, vol. 91(1), pages 466-474.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghaffour, Noreddine & Lattemann, Sabine & Missimer, Thomas & Ng, Kim Choon & Sinha, Shahnawaz & Amy, Gary, 2014. "Renewable energy-driven innovative energy-efficient desalination technologies," Applied Energy, Elsevier, vol. 136(C), pages 1155-1165.
    2. Swaminathan, Jaichander & Chung, Hyung Won & Warsinger, David M. & Lienhard V, John H., 2018. "Energy efficiency of membrane distillation up to high salinity: Evaluating critical system size and optimal membrane thickness," Applied Energy, Elsevier, vol. 211(C), pages 715-734.
    3. Kaczmarczyk, Michał & Mukti, Mentari & Ghaffour, Noreddine & Soukane, Sofiane & Bundschuh, Jochen & Tomaszewska, Barbara, 2024. "Renewable energy-driven membrane distillation in the context of life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    4. Youmin Hou & Prexa Shah & Vassilios Constantoudis & Evangelos Gogolides & Michael Kappl & Hans-Jürgen Butt, 2023. "A super liquid-repellent hierarchical porous membrane for enhanced membrane distillation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Calise, Francesco & Dentice d'Accadia, Massimo & Macaluso, Adriano & Vanoli, Laura & Piacentino, Antonio, 2016. "A novel solar-geothermal trigeneration system integrating water desalination: Design, dynamic simulation and economic assessment," Energy, Elsevier, vol. 115(P3), pages 1533-1547.
    6. Chang, Hsuan & Hsu, Jian-An & Chang, Cheng-Liang & Ho, Chii-Dong & Cheng, Tung-Wen, 2017. "Simulation study of transfer characteristics for spacer-filled membrane distillation desalination modules," Applied Energy, Elsevier, vol. 185(P2), pages 2045-2057.
    7. Carta, José A. & González, Jaime & Cabrera, Pedro & Subiela, Vicente J., 2015. "Preliminary experimental analysis of a small-scale prototype SWRO desalination plant, designed for continuous adjustment of its energy consumption to the widely varying power generated by a stand-alon," Applied Energy, Elsevier, vol. 137(C), pages 222-239.
    8. Ghaffour, N. & Soukane, S. & Lee, J.-G. & Kim, Y. & Alpatova, A., 2019. "Membrane distillation hybrids for water production and energy efficiency enhancement: A critical review," Applied Energy, Elsevier, vol. 254(C).
    9. Prado de Nicolás, Amanda & Molina-García, Ángel & García-Bermejo, Juan Tomás & Vera-García, Francisco, 2023. "Desalination, minimal and zero liquid discharge powered by renewable energy sources: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    10. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    11. González, Daniel & Amigo, José & Suárez, Francisco, 2017. "Membrane distillation: Perspectives for sustainable and improved desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 238-259.
    12. D. Chandrasekharam & A. Lashin & N. Arifi & A. Bassam & C. Varun, 2017. "Desalination of Seawater using Geothermal Energy to Meet Future Fresh Water Demand of Saudi Arabia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 781-792, February.
    13. Baghbanzadeh, Mohammadali & Rana, Dipak & Lan, Christopher Q. & Matsuura, Takeshi, 2017. "Zero thermal input membrane distillation, a zero-waste and sustainable solution for freshwater shortage," Applied Energy, Elsevier, vol. 187(C), pages 910-928.
    14. Swaminathan, Jaichander & Chung, Hyung Won & Warsinger, David M. & Lienhard V, John H., 2016. "Membrane distillation model based on heat exchanger theory and configuration comparison," Applied Energy, Elsevier, vol. 184(C), pages 491-505.
    15. Yang, Minbo & Feng, Xiao & Liu, Guilian, 2016. "Heat integration of heat pump assisted distillation into the overall process," Applied Energy, Elsevier, vol. 162(C), pages 1-10.
    16. Ali, Aamer & Tufa, Ramato Ashu & Macedonio, Francesca & Curcio, Efrem & Drioli, Enrico, 2018. "Membrane technology in renewable-energy-driven desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1-21.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    2. Chen, Q. & Kum Ja, M. & Li, Y. & Chua, K.J., 2018. "Evaluation of a solar-powered spray-assisted low-temperature desalination technology," Applied Energy, Elsevier, vol. 211(C), pages 997-1008.
    3. El-Agouz, S.A. & Abd El-Aziz, G.B. & Awad, A.M., 2014. "Solar desalination system using spray evaporation," Energy, Elsevier, vol. 76(C), pages 276-283.
    4. Colmenar-Santos, Antonio & Palomo-Torrejón, Elisabet & Mur-Pérez, Francisco & Rosales-Asensio, Enrique, 2020. "Thermal desalination potential with parabolic trough collectors and geothermal energy in the Spanish southeast," Applied Energy, Elsevier, vol. 262(C).
    5. Gude, Veera Gnaneswar, 2015. "Energy storage for desalination processes powered by renewable energy and waste heat sources," Applied Energy, Elsevier, vol. 137(C), pages 877-898.
    6. Wang, Qiushi & Zhu, Ziye & Wu, Gang & Zhang, Xiang & Zheng, Hongfei, 2018. "Energy analysis and experimental verification of a solar freshwater self-produced ecological film floating on the sea," Applied Energy, Elsevier, vol. 224(C), pages 510-526.
    7. Chen, C.Q. & Diao, Y.H. & Zhao, Y.H. & Ji, W.H. & Wang, Z.Y. & Liang, L., 2019. "Thermal performance of a thermal-storage unit by using a multichannel flat tube and rectangular fins," Applied Energy, Elsevier, vol. 250(C), pages 1280-1291.
    8. Anand, B. & Shankar, R. & Murugavelh, S. & Rivera, W. & Midhun Prasad, K. & Nagarajan, R., 2021. "A review on solar photovoltaic thermal integrated desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    9. Heyhat, M.M. & Valizade, M. & Abdolahzade, Sh. & Maerefat, M., 2020. "Thermal efficiency enhancement of direct absorption parabolic trough solar collector (DAPTSC) by using nanofluid and metal foam," Energy, Elsevier, vol. 192(C).
    10. Zhani, Khalifa, 2013. "Solar desalination based on multiple effect humidification process: Thermal performance and experimental validation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 406-417.
    11. Xie, Guo & Sun, Licheng & Mo, Zhengyu & Liu, Hongtao & Du, Min, 2016. "Conceptual design and experimental investigation involving a modular desalination system composed of arrayed tubular solar stills," Applied Energy, Elsevier, vol. 179(C), pages 972-984.
    12. Zhou, Ran & Wang, Ruilin & Xing, Chenjian & Sun, Jian & Guo, Yafei & Li, Weiling & Qu, Wanjun & Hong, Hui & Zhao, Chuanwen, 2022. "Design and analysis of a compact solar concentrator tracking via the refraction of the rotating prism," Energy, Elsevier, vol. 251(C).
    13. Karimi Estahbanati, M.R. & Ahsan, Amimul & Feilizadeh, Mehrzad & Jafarpur, Khosrow & Ashrafmansouri, Seyedeh-Saba & Feilizadeh, Mansoor, 2016. "Theoretical and experimental investigation on internal reflectors in a single-slope solar still," Applied Energy, Elsevier, vol. 165(C), pages 537-547.
    14. Chen, Yih-Hang & Li, Yu-Wei & Chang, Hsuan, 2012. "Optimal design and control of solar driven air gap membrane distillation desalination systems," Applied Energy, Elsevier, vol. 100(C), pages 193-204.
    15. Mousa, Hasan & Gujarathi, Ashish M., 2016. "Modeling and analysis the productivity of solar desalination units with phase change materials," Renewable Energy, Elsevier, vol. 95(C), pages 225-232.
    16. Chen, Meijie & He, Yurong & Zhu, Jiaqi & Wen, Dongsheng, 2016. "Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors," Applied Energy, Elsevier, vol. 181(C), pages 65-74.
    17. Feilizadeh, Mansoor & Karimi Estahbanati, M.R. & Jafarpur, Khosrow & Roostaazad, Reza & Feilizadeh, Mehrzad & Taghvaei, Hamed, 2015. "Year-round outdoor experiments on a multi-stage active solar still with different numbers of solar collectors," Applied Energy, Elsevier, vol. 152(C), pages 39-46.
    18. Kim, Yong Sin & Balkoski, Kevin & Jiang, Lun & Winston, Roland, 2013. "Efficient stationary solar thermal collector systems operating at a medium-temperature range," Applied Energy, Elsevier, vol. 111(C), pages 1071-1079.
    19. Karimi Estahbanati, M.R. & Feilizadeh, Mehrzad & Jafarpur, Khosrow & Feilizadeh, Mansoor & Rahimpour, Mohammad Reza, 2015. "Experimental investigation of a multi-effect active solar still: The effect of the number of stages," Applied Energy, Elsevier, vol. 137(C), pages 46-55.
    20. Hussein M. Maghrabie & Abdul Ghani Olabi & Ahmed Rezk & Ali Radwan & Abdul Hai Alami & Mohammad Ali Abdelkareem, 2023. "Energy Storage for Water Desalination Systems Based on Renewable Energy Resources," Energies, MDPI, vol. 16(7), pages 1-34, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:112:y:2013:i:c:p:737-746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.