IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v251y2022ics0360544222007034.html
   My bibliography  Save this article

Design and analysis of a compact solar concentrator tracking via the refraction of the rotating prism

Author

Listed:
  • Zhou, Ran
  • Wang, Ruilin
  • Xing, Chenjian
  • Sun, Jian
  • Guo, Yafei
  • Li, Weiling
  • Qu, Wanjun
  • Hong, Hui
  • Zhao, Chuanwen

Abstract

The area for the solar energy utilization in the building is limited. With this in mind, a compact solar collector which integrated the prism and semi-parabolic trough mirror is proposed for the efficiently solar energy collecting in limited space. The prism is rotated to track the sun and keep the emitted sunlight perpendicular to the aperture of semi-parabolic trough mirror. The sunlight from the prism is then reflected and concentrated by semi-parabolic trough mirror and finally absorbed by the receiver tube. Based on the rigorous theoretical model, the tracking strategy is proposed and verified, which indicate that the sun could be tracked exactly and the tracking strategy is effective in the condition of non-parallel and multi-spectrum solar radiation. The geometric concentrating ratio, geometric parameters and the row arrangement of the proposed solar collector are all optimized. The results show that the annual solar-to-thermal efficiency evaluated by land area of the proposed solar collector is up to 41.1%, which is 6.7 and 17.6 percent points higher than those of parabolic trough and flat plate collectors, respectively. With the performance advantage in the solar collecting within limited space, the proposed solar collector could provide a promising approach for the solar energy utilization in the building.

Suggested Citation

  • Zhou, Ran & Wang, Ruilin & Xing, Chenjian & Sun, Jian & Guo, Yafei & Li, Weiling & Qu, Wanjun & Hong, Hui & Zhao, Chuanwen, 2022. "Design and analysis of a compact solar concentrator tracking via the refraction of the rotating prism," Energy, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:energy:v:251:y:2022:i:c:s0360544222007034
    DOI: 10.1016/j.energy.2022.123800
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222007034
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123800?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Moucun & Moghimi, M.A. & Zhu, Yuezhao & Qiao, Runpeng & Wang, Yinfeng & Taylor, Robert A., 2020. "Optical and thermal performance analysis of a micro parabolic trough collector for building integration," Applied Energy, Elsevier, vol. 260(C).
    2. Jared S. Price & Xing Sheng & Bram M. Meulblok & John A. Rogers & Noel C. Giebink, 2015. "Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics," Nature Communications, Nature, vol. 6(1), pages 1-8, May.
    3. Tang, Runsheng & Wu, Tong, 2004. "Optimal tilt-angles for solar collectors used in China," Applied Energy, Elsevier, vol. 79(3), pages 239-248, November.
    4. Ayompe, L.M. & Duffy, A. & Mc Keever, M. & Conlon, M. & McCormack, S.J., 2011. "Comparative field performance study of flat plate and heat pipe evacuated tube collectors (ETCs) for domestic water heating systems in a temperate climate," Energy, Elsevier, vol. 36(5), pages 3370-3378.
    5. Fernández-García, A. & Zarza, E. & Valenzuela, L. & Pérez, M., 2010. "Parabolic-trough solar collectors and their applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1695-1721, September.
    6. Valenzuela, Loreto & López-Martín, Rafael & Zarza, Eduardo, 2014. "Optical and thermal performance of large-size parabolic-trough solar collectors from outdoor experiments: A test method and a case study," Energy, Elsevier, vol. 70(C), pages 456-464.
    7. Li, Guiqiang & Xuan, Qingdong & Akram, M.W. & Golizadeh Akhlaghi, Yousef & Liu, Haowen & Shittu, Samson, 2020. "Building integrated solar concentrating systems: A review," Applied Energy, Elsevier, vol. 260(C).
    8. Gude, Veera Gnaneswar & Nirmalakhandan, Nagamany & Deng, Shuguang & Maganti, Anand, 2012. "Low temperature desalination using solar collectors augmented by thermal energy storage," Applied Energy, Elsevier, vol. 91(1), pages 466-474.
    9. Kim, Yong Sin & Balkoski, Kevin & Jiang, Lun & Winston, Roland, 2013. "Efficient stationary solar thermal collector systems operating at a medium-temperature range," Applied Energy, Elsevier, vol. 111(C), pages 1071-1079.
    10. Yunker, James A, 2001. "Stochastic CVP Analysis with Economic Demand and Cost Functions," Review of Quantitative Finance and Accounting, Springer, vol. 17(2), pages 127-149, September.
    11. Rodriguez-Sanchez, David & Rosengarten, Gary, 2015. "Improving the concentration ratio of parabolic troughs using a second-stage flat mirror," Applied Energy, Elsevier, vol. 159(C), pages 620-632.
    12. Jared S. Price & Alex J. Grede & Baomin Wang & Michael V. Lipski & Brent Fisher & Kyu-Tae Lee & Junwen He & Gregory S. Brulo & Xiaokun Ma & Scott Burroughs & Christopher D. Rahn & Ralph G. Nuzzo & Joh, 2017. "High-concentration planar microtracking photovoltaic system exceeding 30% efficiency," Nature Energy, Nature, vol. 2(8), pages 1-7, August.
    13. Li, Qiyuan & Zheng, Cheng & Shirazi, Ali & Bany Mousa, Osama & Moscia, Fabio & Scott, Jason A. & Taylor, Robert A., 2017. "Design and analysis of a medium-temperature, concentrated solar thermal collector for air-conditioning applications," Applied Energy, Elsevier, vol. 190(C), pages 1159-1173.
    14. Manikandan, G.K. & Iniyan, S. & Goic, Ranko, 2019. "Enhancing the optical and thermal efficiency of a parabolic trough collector – A review," Applied Energy, Elsevier, vol. 235(C), pages 1524-1540.
    15. Pabon, Juan J.G. & Khosravi, Ali & Malekan, M. & Sandoval, Oscar R., 2020. "Modeling and energy analysis of a linear concentrating photovoltaic system cooled by two-phase mechanical pumped loop system," Renewable Energy, Elsevier, vol. 157(C), pages 273-289.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azam, Md Sadequl & Bhattacharjee, Atish & Hassan, Mahedi & Rahaman, Mashudur & Aziz, Shahin & Ali Shaikh, Md Aftab & Islam, Md Saidul, 2024. "Performance enhancement of solar PV system introducing semi-continuous tracking algorithm based solar tracker," Energy, Elsevier, vol. 289(C).
    2. Vanaga, Ruta & Narbuts, Jānis & Zundāns, Zigmārs & Blumberga, Andra, 2023. "On-site testing of dynamic facade system with the solar energy storage," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Alamdari, Pedram & Khatamifar, Mehdi & Lin, Wenxian, 2024. "Heat loss analysis review: Parabolic trough and linear Fresnel collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    3. Ignacio Arias & Eduardo Zarza & Loreto Valenzuela & Manuel Pérez-García & José Alfonso Romero Ramos & Rodrigo Escobar, 2021. "Modeling and Hourly Time-Scale Characterization of the Main Energy Parameters of Parabolic-Trough Solar Thermal Power Plants Using a Simplified Quasi-Dynamic Model," Energies, MDPI, vol. 14(1), pages 1-27, January.
    4. Widyolar, Bennett & Jiang, Lun & Ferry, Jonathan & Winston, Roland, 2018. "Non-tracking East-West XCPC solar thermal collector for 200 celsius applications," Applied Energy, Elsevier, vol. 216(C), pages 521-533.
    5. Deng, Cheng-gang & Chen, Fei, 2021. "Model verification and photo-thermal conversion assessment of a novel facade embedded compound parabolic concentrator," Energy, Elsevier, vol. 220(C).
    6. Wang, Ruilin & Qu, Wanjun & Hong, Hui & Sun, Jie & Jin, Hongguang, 2018. "Experimental performance of 300 kWth prototype of parabolic trough collector with rotatable axis and irreversibility analysis," Energy, Elsevier, vol. 161(C), pages 595-609.
    7. Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
    8. Fasquelle, T. & Falcoz, Q. & Neveu, P. & Lecat, F. & Flamant, G., 2017. "A thermal model to predict the dynamic performances of parabolic trough lines," Energy, Elsevier, vol. 141(C), pages 1187-1203.
    9. Liu, Shuaishuai & Yang, Bin & Hou, Yutian & Yu, Xiaohui, 2022. "Effects of geometric configurations on the thermal-mechanical properties of parabolic trough receivers based on coupled optical-thermal-stress model," Renewable Energy, Elsevier, vol. 199(C), pages 929-942.
    10. Wang, Ruilin & Sun, Jie & Hong, Hui, 2019. "Proposal of solar-aided coal-fired power generation system with direct steam generation and active composite sun-tracking," Renewable Energy, Elsevier, vol. 141(C), pages 596-612.
    11. Gao, Datong & Zhong, Shuai & Ren, Xiao & Kwan, Trevor Hocksun & Pei, Gang, 2022. "The energetic, exergetic, and mechanical comparison of two structurally optimized non-concentrating solar collectors for intermediate temperature applications," Renewable Energy, Elsevier, vol. 184(C), pages 881-898.
    12. Moosavian, Seyed Farhan & Borzuei, Daryoosh & Ahmadi, Abolfazl, 2021. "Energy, exergy, environmental and economic analysis of the parabolic solar collector with life cycle assessment for different climate conditions," Renewable Energy, Elsevier, vol. 165(P1), pages 301-320.
    13. Gianluca Marotta & Paola Sansoni & Franco Francini & David Jafrancesco & Maurizio De Lucia & Daniela Fontani, 2020. "Structured Light Profilometry on m-PTC," Energies, MDPI, vol. 13(21), pages 1-17, October.
    14. Gharat, Punit V. & Bhalekar, Snehal S. & Dalvi, Vishwanath H. & Panse, Sudhir V. & Deshmukh, Suresh P. & Joshi, Jyeshtharaj B., 2021. "Chronological development of innovations in reflector systems of parabolic trough solar collector (PTC) - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    15. Xu, Li & Sun, Feihu & Ma, Linrui & Li, Xiaolei & Yuan, Guofeng & Lei, Dongqiang & Zhu, Huibin & Zhang, Qiangqiang & Xu, Ershu & Wang, Zhifeng, 2018. "Analysis of the influence of heat loss factors on the overall performance of utility-scale parabolic trough solar collectors," Energy, Elsevier, vol. 162(C), pages 1077-1091.
    16. Manikandan, G.K. & Iniyan, S. & Goic, Ranko, 2019. "Enhancing the optical and thermal efficiency of a parabolic trough collector – A review," Applied Energy, Elsevier, vol. 235(C), pages 1524-1540.
    17. Bellos, Evangelos & Tzivanidis, Christos & Tsimpoukis, Dimitrios, 2017. "Multi-criteria evaluation of parabolic trough collector with internally finned absorbers," Applied Energy, Elsevier, vol. 205(C), pages 540-561.
    18. Fang, Juan & Liu, Qibin & Guo, Shaopeng & Lei, Jing & Jin, Hongguang, 2019. "Spanning solar spectrum: A combined photochemical and thermochemical process for solar energy storage," Applied Energy, Elsevier, vol. 247(C), pages 116-126.
    19. Wang, Qiliang & Hu, Mingke & Yang, Honglun & Cao, Jingyu & Li, Jing & Su, Yuehong & Pei, Gang, 2019. "Performance evaluation and analyses of novel parabolic trough evacuated collector tubes with spectrum-selective glass envelope," Renewable Energy, Elsevier, vol. 138(C), pages 793-804.
    20. Gong, Jing-hu & Wang, Jun & Lund, Peter D. & Zhao, Dan-dan & Hu, En-yi & Jin, Wei, 2020. "Improving the performance of large-aperture parabolic trough solar concentrator using semi-circular absorber tube with external fin and flat-plate radiation shield," Renewable Energy, Elsevier, vol. 159(C), pages 1215-1223.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:251:y:2022:i:c:s0360544222007034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.