IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v184y2016icp491-505.html
   My bibliography  Save this article

Membrane distillation model based on heat exchanger theory and configuration comparison

Author

Listed:
  • Swaminathan, Jaichander
  • Chung, Hyung Won
  • Warsinger, David M.
  • Lienhard V, John H.

Abstract

Improving the energy efficiency of membrane distillation (MD) is essential for its widespread adoption for renewable energy driven desalination systems. Here, an energy efficiency framework for membrane distillation modules is developed based on heat exchanger theory, and with this an accurate but vastly simplified numerical model for MD efficiency and flux is derived. This heat exchanger analogy shows that membrane distillation systems may be characterized using non-dimensional parameters from counter-flow heat exchanger (HX) theory such as effectiveness (ε) and number of transfer units (NTU). Along with the commonly used MD thermal efficiency (η), “MD effectiveness” ε should be used to understand the energy efficiency (measured as gained output ratio, GOR) and water vapor flux of single stage membrane distillation systems. GOR increases linearly with η (due to decreasing conduction losses), but increases more rapidly with an increase in ε (better heat recovery). Using the proposed theoretical framework, the performance of different single stage MD configurations is compared for seawater desalination. The gap between the membrane and the condensing surface constitutes the major resistance in both air gap (AGMD) and permeate gap (PGMD) systems (75% of the total in AGMD and 50% in PGMD). Reducing the gap resistance by increasing gap conductance (conductive gap MD (CGMD)), leads to an increase in ε through an increase in NTU, and only a small decrease in η, resulting in about two times higher overall GOR. GOR of direct contact MD (DCMD) is limited by the size of the external heat exchanger, and can be as high as that of CGMD only if the heat exchanger area is about 7 times larger than the membrane. While MD membrane design should focus on increasing the membrane’s permeability and reducing its conductance to achieve higher η, module design for seawater desalination should focus on increasing ε by reducing the major resistance to heat transfer. A simplified model to predict system GOR and water vapor flux of PGMD, CGMD and DCMD, without employing finite difference discretization, is presented. Computationally, the simplified HX model is several orders of magnitude faster than full numerical models and the results from the simplified model are within 11% of the results from more detailed simulations over a wide range of operating conditions.

Suggested Citation

  • Swaminathan, Jaichander & Chung, Hyung Won & Warsinger, David M. & Lienhard V, John H., 2016. "Membrane distillation model based on heat exchanger theory and configuration comparison," Applied Energy, Elsevier, vol. 184(C), pages 491-505.
  • Handle: RePEc:eee:appene:v:184:y:2016:i:c:p:491-505
    DOI: 10.1016/j.apenergy.2016.09.090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916313927
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.09.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghaffour, Noreddine & Lattemann, Sabine & Missimer, Thomas & Ng, Kim Choon & Sinha, Shahnawaz & Amy, Gary, 2014. "Renewable energy-driven innovative energy-efficient desalination technologies," Applied Energy, Elsevier, vol. 136(C), pages 1155-1165.
    2. Sarbatly, Rosalam & Chiam, Chel-Ken, 2013. "Evaluation of geothermal energy in desalination by vacuum membrane distillation," Applied Energy, Elsevier, vol. 112(C), pages 737-746.
    3. Zaragoza, G. & Ruiz-Aguirre, A. & Guillén-Burrieza, E., 2014. "Efficiency in the use of solar thermal energy of small membrane desalination systems for decentralized water production," Applied Energy, Elsevier, vol. 130(C), pages 491-499.
    4. Suárez, Francisco & Ruskowitz, Jeffrey A. & Tyler, Scott W. & Childress, Amy E., 2015. "Renewable water: Direct contact membrane distillation coupled with solar ponds," Applied Energy, Elsevier, vol. 158(C), pages 532-539.
    5. Thiel, Gregory P. & McGovern, Ronan K. & Zubair, Syed M. & Lienhard V, John H., 2014. "Thermodynamic equipartition for increased second law efficiency," Applied Energy, Elsevier, vol. 118(C), pages 292-299.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Altmann, Thomas & Robert, Justin & Bouma, Andrew & Swaminathan, Jaichander & Lienhard, John H., 2019. "Primary energy and exergy of desalination technologies in a power-water cogeneration scheme," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    2. Zhang, Quanguo & Nurhayati, & Cheng, Chieh-Lun & Lo, Yung-Chung & Nagarajan, Dillirani & Hu, Jianjun & Chang, Jo-Shu & Lee, Duu-Jong, 2017. "Ethanol production by modified polyvinyl alcohol-immobilized Zymomonas mobilis and in situ membrane distillation under very high gravity condition," Applied Energy, Elsevier, vol. 202(C), pages 1-5.
    3. Li, Qiyuan & Omar, Amr & Cha-Umpong, Withita & Liu, Qian & Li, Xiaopeng & Wen, Jianping & Wang, Yinfeng & Razmjou, Amir & Guan, Jing & Taylor, Robert A., 2020. "The potential of hollow fiber vacuum multi-effect membrane distillation for brine treatment," Applied Energy, Elsevier, vol. 276(C).
    4. Swaminathan, Jaichander & Chung, Hyung Won & Warsinger, David M. & Lienhard V, John H., 2018. "Energy efficiency of membrane distillation up to high salinity: Evaluating critical system size and optimal membrane thickness," Applied Energy, Elsevier, vol. 211(C), pages 715-734.
    5. Zhao, Yanan & Li, Mingliang & Long, Rui & Liu, Zhichun & Liu, Wei, 2021. "Dynamic modeling and analysis of an advanced adsorption-based osmotic heat engines to harvest solar energy," Renewable Energy, Elsevier, vol. 175(C), pages 638-649.
    6. Praveen Kumar, G. & Ayou, Dereje S. & Narendran, C. & Saravanan, R. & Maiya, M.P. & Coronas, Alberto, 2023. "Renewable heat powered polygeneration system based on an advanced absorption cycle for rural communities," Energy, Elsevier, vol. 262(PA).
    7. Tan, Yong Zen & Han, Le & Chew, Nick Guan Pin & Chow, Wai Hoong & Wang, Rong & Chew, Jia Wei, 2018. "Membrane distillation hybridized with a thermoelectric heat pump for energy-efficient water treatment and space cooling," Applied Energy, Elsevier, vol. 231(C), pages 1079-1088.
    8. Long, Rui & Lai, Xiaotian & Liu, Zhichun & Liu, Wei, 2018. "Direct contact membrane distillation system for waste heat recovery: Modelling and multi-objective optimization," Energy, Elsevier, vol. 148(C), pages 1060-1068.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baghbanzadeh, Mohammadali & Rana, Dipak & Lan, Christopher Q. & Matsuura, Takeshi, 2017. "Zero thermal input membrane distillation, a zero-waste and sustainable solution for freshwater shortage," Applied Energy, Elsevier, vol. 187(C), pages 910-928.
    2. Swaminathan, Jaichander & Chung, Hyung Won & Warsinger, David M. & Lienhard V, John H., 2018. "Energy efficiency of membrane distillation up to high salinity: Evaluating critical system size and optimal membrane thickness," Applied Energy, Elsevier, vol. 211(C), pages 715-734.
    3. González, Daniel & Amigo, José & Suárez, Francisco, 2017. "Membrane distillation: Perspectives for sustainable and improved desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 238-259.
    4. Prado de Nicolás, Amanda & Molina-García, Ángel & García-Bermejo, Juan Tomás & Vera-García, Francisco, 2023. "Desalination, minimal and zero liquid discharge powered by renewable energy sources: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    5. Kaczmarczyk, Michał & Mukti, Mentari & Ghaffour, Noreddine & Soukane, Sofiane & Bundschuh, Jochen & Tomaszewska, Barbara, 2024. "Renewable energy-driven membrane distillation in the context of life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    6. Andrés-Mañas, J.A. & Roca, L. & Ruiz-Aguirre, A. & Acién, F.G. & Gil, J.D. & Zaragoza, G., 2020. "Application of solar energy to seawater desalination in a pilot system based on vacuum multi-effect membrane distillation," Applied Energy, Elsevier, vol. 258(C).
    7. Ali, Aamer & Tufa, Ramato Ashu & Macedonio, Francesca & Curcio, Efrem & Drioli, Enrico, 2018. "Membrane technology in renewable-energy-driven desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1-21.
    8. Chang, Hsuan & Hsu, Jian-An & Chang, Cheng-Liang & Ho, Chii-Dong & Cheng, Tung-Wen, 2017. "Simulation study of transfer characteristics for spacer-filled membrane distillation desalination modules," Applied Energy, Elsevier, vol. 185(P2), pages 2045-2057.
    9. Gil, Juan D. & Roca, Lidia & Zaragoza, Guillermo & Berenguel, Manuel, 2018. "A feedback control system with reference governor for a solar membrane distillation pilot facility," Renewable Energy, Elsevier, vol. 120(C), pages 536-549.
    10. Tashtoush, Bourhan & Alyahya, Wa'ed & Al Ghadi, Malak & Al-Omari, Jamal & Morosuk, Tatiana, 2023. "Renewable energy integration in water desalination: State-of-the-art review and comparative analysis," Applied Energy, Elsevier, vol. 352(C).
    11. Altmann, Thomas & Robert, Justin & Bouma, Andrew & Swaminathan, Jaichander & Lienhard, John H., 2019. "Primary energy and exergy of desalination technologies in a power-water cogeneration scheme," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    12. Ghaffour, N. & Soukane, S. & Lee, J.-G. & Kim, Y. & Alpatova, A., 2019. "Membrane distillation hybrids for water production and energy efficiency enhancement: A critical review," Applied Energy, Elsevier, vol. 254(C).
    13. D. Chandrasekharam & A. Lashin & N. Arifi & A. Bassam & C. Varun, 2017. "Desalination of Seawater using Geothermal Energy to Meet Future Fresh Water Demand of Saudi Arabia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 781-792, February.
    14. Kim, Jungbin & Park, Kiho & Yang, Dae Ryook & Hong, Seungkwan, 2019. "A comprehensive review of energy consumption of seawater reverse osmosis desalination plants," Applied Energy, Elsevier, vol. 254(C).
    15. Ahmed E. Abu El-Maaty & Mohamed M. Awad & Gamal I. Sultan & Ahmed M. Hamed, 2023. "Innovative Approaches to Solar Desalination: A Comprehensive Review of Recent Research," Energies, MDPI, vol. 16(9), pages 1-31, May.
    16. Chen, Qian & Alrowais, Raid & Burhan, Muhammad & Ybyraiymkul, Doskhan & Shahzad, Muhammad Wakil & Li, Yong & Ng, Kim Choon, 2020. "A self-sustainable solar desalination system using direct spray technology," Energy, Elsevier, vol. 205(C).
    17. Wang, Zhe & Li, Yanzhong, 2016. "A combined method for surface selection and layer pattern optimization of a multistream plate-fin heat exchanger," Applied Energy, Elsevier, vol. 165(C), pages 815-827.
    18. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    19. Chen, Qian & Burhan, Muhammad & Akhtar, Faheem Hassan & Ybyraiymkul, Doskhan & Shahzad, Muhammad Wakil & Li, Yong & Ng, Kim Choon, 2021. "A decentralized water/electricity cogeneration system integrating concentrated photovoltaic/thermal collectors and vacuum multi-effect membrane distillation," Energy, Elsevier, vol. 230(C).
    20. Alsaman, Ahmed S. & Askalany, Ahmed A. & Harby, K. & Ahmed, Mahmoud S., 2016. "A state of the art of hybrid adsorption desalination–cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 692-703.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:184:y:2016:i:c:p:491-505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.