IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v254y2019ics0306261919313856.html
   My bibliography  Save this article

Membrane distillation hybrids for water production and energy efficiency enhancement: A critical review

Author

Listed:
  • Ghaffour, N.
  • Soukane, S.
  • Lee, J.-G.
  • Kim, Y.
  • Alpatova, A.

Abstract

With an ever-increasing demand in energy, constrained by strict environmental regulations, process development faces stringent design requirements further limited by intrinsic properties of inherent materials. Process hybridization is now considered as an improvement path to several limitations. Complementarity between processes is the essence of the hybridization concept, with the ultimate goal to design more eco-friendly, energy efficient process combinations delivering higher throughputs and boosting the thermodynamic limits of the existing mature technologies. Market size of membrane-based separation processes, widely used in desalination, water treatment and purification, is forecasted to grow significantly in the next decades. While desalination market is mainly shared between thermal processes and reverse osmosis (RO), advanced water treatment and purification rely mostly on membrane technology. Among the large span of available techniques stands membrane distillation (MD), to which a tremendous research effort has been dedicated during the last two decades. Although praised for its numerous advantages, this thermally-driven separation process still cannot withstand large production rates while maintaining energy efficiency. Hybridization of MD with existing technologies and other emerging processes is therefore at the leading edge. This literature review presents the state-of-the-art MD hybrids with different separation processes including RO, pressure retarded osmosis, forward osmosis, mechanical vapor compression, electrocoagulation, electrodialysis, multi-stage flash, multi-effect distillation, crystallization and adsorption with a focus on water production and energy efficiency enhancement. Each of these processes has advantages at the cost of more or less severe drawbacks and its association to MD offers improvement opportunities. Each variant is thoroughly reviewed with major contributions and knowledge gaps highlighted. Perspectives and recommendations are emphasized in each case. Latest developments in MD and its energy consumption and optimization are also reported.

Suggested Citation

  • Ghaffour, N. & Soukane, S. & Lee, J.-G. & Kim, Y. & Alpatova, A., 2019. "Membrane distillation hybrids for water production and energy efficiency enhancement: A critical review," Applied Energy, Elsevier, vol. 254(C).
  • Handle: RePEc:eee:appene:v:254:y:2019:i:c:s0306261919313856
    DOI: 10.1016/j.apenergy.2019.113698
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919313856
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113698?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghaffour, Noreddine & Lattemann, Sabine & Missimer, Thomas & Ng, Kim Choon & Sinha, Shahnawaz & Amy, Gary, 2014. "Renewable energy-driven innovative energy-efficient desalination technologies," Applied Energy, Elsevier, vol. 136(C), pages 1155-1165.
    2. Plappally, A.K. & Lienhard V, J.H., 2012. "Energy requirements for water production, treatment, end use, reclamation, and disposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4818-4848.
    3. Sarbatly, Rosalam & Chiam, Chel-Ken, 2013. "Evaluation of geothermal energy in desalination by vacuum membrane distillation," Applied Energy, Elsevier, vol. 112(C), pages 737-746.
    4. Ghaffour, N. & Reddy, V.K. & Abu-Arabi, M., 2011. "Technology development and application of solar energy in desalination: MEDRC contribution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4410-4415.
    5. Thu, Kyaw & Kim, Young-Deuk & Amy, Gary & Chun, Won Gee & Ng, Kim Choon, 2013. "A hybrid multi-effect distillation and adsorption cycle," Applied Energy, Elsevier, vol. 104(C), pages 810-821.
    6. González, Daniel & Amigo, José & Suárez, Francisco, 2017. "Membrane distillation: Perspectives for sustainable and improved desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 238-259.
    7. Bundschuh, Jochen & Ghaffour, Noreddine & Mahmoudi, Hacene & Goosen, Mattheus & Mushtaq, Shahbaz & Hoinkis, Jan, 2015. "Low-cost low-enthalpy geothermal heat for freshwater production: Innovative applications using thermal desalination processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 196-206.
    8. Banat, F & Jumah, R & Garaibeh, M, 2002. "Exploitation of solar energy collected by solar stills for desalination by membrane distillation," Renewable Energy, Elsevier, vol. 25(2), pages 293-305.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaczmarczyk, Michał & Mukti, Mentari & Ghaffour, Noreddine & Soukane, Sofiane & Bundschuh, Jochen & Tomaszewska, Barbara, 2024. "Renewable energy-driven membrane distillation in the context of life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Miladi, Rihab & Frikha, Nader & Gabsi, Slimane, 2021. "Modeling and energy analysis of a solar thermal vacuum membrane distillation coupled with a liquid ring vacuum pump," Renewable Energy, Elsevier, vol. 164(C), pages 1395-1407.
    3. Xu, Jianwei & Liang, Yingzong & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Chen, Ying, 2023. "Techno-economic-environmental analysis of direct-contact membrane distillation systems integrated with low-grade heat sources: A multi-objective optimization approach," Applied Energy, Elsevier, vol. 349(C).
    4. Zhao, Yanan & Luo, Zuoqing & Long, Rui & Liu, Zhichun & Liu, Wei, 2020. "Performance evaluations of an adsorption-based power and cooling cogeneration system under different operative conditions and working fluids," Energy, Elsevier, vol. 204(C).
    5. Zhu, Huichao & Zhang, Houcheng, 2024. "Integration of proton exchange membrane fuel cell with air gap membrane distillation for sustainable electricity and freshwater cogeneration: Performance, influential mechanism, multi-objective optimi," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Youmin Hou & Prexa Shah & Vassilios Constantoudis & Evangelos Gogolides & Michael Kappl & Hans-Jürgen Butt, 2023. "A super liquid-repellent hierarchical porous membrane for enhanced membrane distillation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Soukane, Sofiane & Son, Hyuk Soo & Mustakeem, Mustakeem & Obaid, M. & Alpatova, Alla & Qamar, Adnan & Jin, Yong & Ghaffour, Noreddine, 2022. "Materials for energy conversion in membrane distillation localized heating: Review, analysis and future perspectives of a paradigm shift," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Zhu, Huichao & Xiao, Liusheng & Kuang, Min & Wang, Jiatang & Zhang, Houcheng, 2024. "Innovative use of air gap membrane distillation to harvest waste heat from alkaline fuel cell for efficient freshwater production: A comprehensive 4E study," Renewable Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baghbanzadeh, Mohammadali & Rana, Dipak & Lan, Christopher Q. & Matsuura, Takeshi, 2017. "Zero thermal input membrane distillation, a zero-waste and sustainable solution for freshwater shortage," Applied Energy, Elsevier, vol. 187(C), pages 910-928.
    2. Ali, Aamer & Tufa, Ramato Ashu & Macedonio, Francesca & Curcio, Efrem & Drioli, Enrico, 2018. "Membrane technology in renewable-energy-driven desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1-21.
    3. Ghaffour, Noreddine & Lattemann, Sabine & Missimer, Thomas & Ng, Kim Choon & Sinha, Shahnawaz & Amy, Gary, 2014. "Renewable energy-driven innovative energy-efficient desalination technologies," Applied Energy, Elsevier, vol. 136(C), pages 1155-1165.
    4. Alsaman, Ahmed S. & Askalany, Ahmed A. & Harby, K. & Ahmed, Mahmoud S., 2016. "A state of the art of hybrid adsorption desalination–cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 692-703.
    5. Youmin Hou & Prexa Shah & Vassilios Constantoudis & Evangelos Gogolides & Michael Kappl & Hans-Jürgen Butt, 2023. "A super liquid-repellent hierarchical porous membrane for enhanced membrane distillation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Prado de Nicolás, Amanda & Molina-García, Ángel & García-Bermejo, Juan Tomás & Vera-García, Francisco, 2023. "Desalination, minimal and zero liquid discharge powered by renewable energy sources: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    7. Kaczmarczyk, Michał & Mukti, Mentari & Ghaffour, Noreddine & Soukane, Sofiane & Bundschuh, Jochen & Tomaszewska, Barbara, 2024. "Renewable energy-driven membrane distillation in the context of life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    8. Andrés-Mañas, J.A. & Roca, L. & Ruiz-Aguirre, A. & Acién, F.G. & Gil, J.D. & Zaragoza, G., 2020. "Application of solar energy to seawater desalination in a pilot system based on vacuum multi-effect membrane distillation," Applied Energy, Elsevier, vol. 258(C).
    9. Swaminathan, Jaichander & Chung, Hyung Won & Warsinger, David M. & Lienhard V, John H., 2018. "Energy efficiency of membrane distillation up to high salinity: Evaluating critical system size and optimal membrane thickness," Applied Energy, Elsevier, vol. 211(C), pages 715-734.
    10. Narasimhan, Arunkumar & Kamal, Rajeev & Almatrafi, Eydhah, 2022. "Novel synergetic integration of supercritical carbon dioxide Brayton cycle and adsorption desalination," Energy, Elsevier, vol. 238(PB).
    11. Bundschuh, Jochen & Ghaffour, Noreddine & Mahmoudi, Hacene & Goosen, Mattheus & Mushtaq, Shahbaz & Hoinkis, Jan, 2015. "Low-cost low-enthalpy geothermal heat for freshwater production: Innovative applications using thermal desalination processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 196-206.
    12. Ortega-Delgado, Bartolomé & Cornali, Matteo & Palenzuela, Patricia & Alarcón-Padilla, Diego C., 2017. "Operational analysis of the coupling between a multi-effect distillation unit with thermal vapor compression and a Rankine cycle power block using variable nozzle thermocompressors," Applied Energy, Elsevier, vol. 204(C), pages 690-701.
    13. Morciano, Matteo & Fasano, Matteo & Bergamasco, Luca & Albiero, Alessandro & Lo Curzio, Mario & Asinari, Pietro & Chiavazzo, Eliodoro, 2020. "Sustainable freshwater production using passive membrane distillation and waste heat recovery from portable generator sets," Applied Energy, Elsevier, vol. 258(C).
    14. Swaminathan, Jaichander & Chung, Hyung Won & Warsinger, David M. & Lienhard V, John H., 2016. "Membrane distillation model based on heat exchanger theory and configuration comparison," Applied Energy, Elsevier, vol. 184(C), pages 491-505.
    15. Smith, Kate & Liu, Shuming & Liu, Ying & Guo, Shengjie, 2018. "Can China reduce energy for water? A review of energy for urban water supply and wastewater treatment and suggestions for change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 41-58.
    16. González, Daniel & Amigo, José & Suárez, Francisco, 2017. "Membrane distillation: Perspectives for sustainable and improved desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 238-259.
    17. D. Chandrasekharam & A. Lashin & N. Arifi & A. Bassam & C. Varun, 2017. "Desalination of Seawater using Geothermal Energy to Meet Future Fresh Water Demand of Saudi Arabia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 781-792, February.
    18. Kim, Jungbin & Park, Kiho & Yang, Dae Ryook & Hong, Seungkwan, 2019. "A comprehensive review of energy consumption of seawater reverse osmosis desalination plants," Applied Energy, Elsevier, vol. 254(C).
    19. Ahmed E. Abu El-Maaty & Mohamed M. Awad & Gamal I. Sultan & Ahmed M. Hamed, 2023. "Innovative Approaches to Solar Desalination: A Comprehensive Review of Recent Research," Energies, MDPI, vol. 16(9), pages 1-31, May.
    20. Chen, Qian & Alrowais, Raid & Burhan, Muhammad & Ybyraiymkul, Doskhan & Shahzad, Muhammad Wakil & Li, Yong & Ng, Kim Choon, 2020. "A self-sustainable solar desalination system using direct spray technology," Energy, Elsevier, vol. 205(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:254:y:2019:i:c:s0306261919313856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.