IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i1p72-d62107.html
   My bibliography  Save this article

Modeling and Multi-Objective Optimization of Engine Performance and Hydrocarbon Emissions via the Use of a Computer Aided Engineering Code and the NSGA-II Genetic Algorithm

Author

Listed:
  • Richard Fiifi Turkson

    (School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China
    Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
    Mechanical Engineering Department, Ho Polytechnic, P.O. Box HP 217, Ho 036, Ghana)

  • Fuwu Yan

    (School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China
    Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China)

  • Mohamed Kamal Ahmed Ali

    (School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China
    Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
    Automotive and Tractors Engineering Department, Faculty of Engineering, Minia University, El-Minia 61111, Egypt)

  • Bo Liu

    (School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China
    Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China)

  • Jie Hu

    (School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China
    Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China)

Abstract

It is feared that the increasing population of vehicles in the world and the depletion of fossil-based fuel reserves could render transportation and other activities that rely on fossil fuels unsustainable in the long term. Concerns over environmental pollution issues, the high cost of fossil-based fuels and the increasing demand for fossil fuels has led to the search for environmentally friendly, cheaper and efficient fuels. In the search for these alternatives, liquefied petroleum gas (LPG) has been identified as one of the viable alternatives that could be used in place of gasoline in spark-ignition engines. The objective of the study was to present the modeling and multi-objective optimization of brake mean effective pressure and hydrocarbon emissions for a spark-ignition engine retrofitted to run on LPG. The use of a one-dimensional (1D) GT-Power™ model, together with Group Method of Data Handling (GMDH) neural networks, has been presented. The multi-objective optimization was implemented in MATLAB ® using the non-dominated sorting genetic algorithm (NSGA-II). The modeling process generally achieved low mean squared errors (0.0000032 in the case of the hydrocarbon emissions model) for the models developed and was attributed to the collection of a larger training sample data using the 1D engine model. The multi-objective optimization and subsequent decisions for optimal performance have also been presented.

Suggested Citation

  • Richard Fiifi Turkson & Fuwu Yan & Mohamed Kamal Ahmed Ali & Bo Liu & Jie Hu, 2016. "Modeling and Multi-Objective Optimization of Engine Performance and Hydrocarbon Emissions via the Use of a Computer Aided Engineering Code and the NSGA-II Genetic Algorithm," Sustainability, MDPI, vol. 8(1), pages 1-15, January.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:1:p:72-:d:62107
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/1/72/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/1/72/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D'Errico, G. & Cerri, T. & Pertusi, G., 2011. "Multi-objective optimization of internal combustion engine by means of 1D fluid-dynamic models," Applied Energy, Elsevier, vol. 88(3), pages 767-777, March.
    2. Mohammad Hossein Ahmadi & Mohammad-Ali Ahmadi & Mehdi Mehrpooya & Marc A. Rosen, 2015. "Using GMDH Neural Networks to Model the Power and Torque of a Stirling Engine," Sustainability, MDPI, vol. 7(2), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kyung Sun Lee & Ki Jun Han & Jae Wook Lee, 2016. "Feasibility Study on Parametric Optimization of Daylighting in Building Shading Design," Sustainability, MDPI, vol. 8(12), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mofid, Hossein & Jazayeri-Rad, Hooshang & Shahbazian, Mehdi & Fetanat, Abdolvahhab, 2019. "Enhancing the performance of a parallel nitrogen expansion liquefaction process (NELP) using the multi-objective particle swarm optimization (MOPSO) algorithm," Energy, Elsevier, vol. 172(C), pages 286-303.
    2. Zhang, Qiang & Ogren, Ryan M. & Kong, Song-Charng, 2016. "A comparative study of biodiesel engine performance optimization using enhanced hybrid PSO–GA and basic GA," Applied Energy, Elsevier, vol. 165(C), pages 676-684.
    3. Delgarm, N. & Sajadi, B. & Kowsary, F. & Delgarm, S., 2016. "Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO)," Applied Energy, Elsevier, vol. 170(C), pages 293-303.
    4. Li, Yangtao & Khajepour, Amir & Devaud, Cécile & Liu, Kaimin, 2017. "Power and fuel economy optimizations of gasoline engines using hydraulic variable valve actuation system," Applied Energy, Elsevier, vol. 206(C), pages 577-593.
    5. Jiani Heng & Chen Wang & Xuejing Zhao & Liye Xiao, 2016. "Research and Application Based on Adaptive Boosting Strategy and Modified CGFPA Algorithm: A Case Study for Wind Speed Forecasting," Sustainability, MDPI, vol. 8(3), pages 1-25, March.
    6. Korakianitis, T. & Imran, S. & Chung, N. & Ali, Hassan & Emberson, D.R. & Crookes, R.J., 2015. "Combustion-response mapping procedure for internal-combustion engine emissions," Applied Energy, Elsevier, vol. 156(C), pages 149-158.
    7. Costa, M. & Di Blasio, G. & Prati, M.V. & Costagliola, M.A. & Cirillo, D. & La Villetta, M. & Caputo, C. & Martoriello, G., 2020. "Multi-objective optimization of a syngas powered reciprocating engine equipping a combined heat and power unit," Applied Energy, Elsevier, vol. 275(C).
    8. Zare, Shahryar & Tavakolpour-saleh, A.R. & Aghahosseini, A. & Sangdani, M.H. & Mirshekari, Reza, 2021. "Design and optimization of Stirling engines using soft computing methods: A review," Applied Energy, Elsevier, vol. 283(C).
    9. Cornolti, L. & Onorati, A. & Cerri, T. & Montenegro, G. & Piscaglia, F., 2013. "1D simulation of a turbocharged Diesel engine with comparison of short and long EGR route solutions," Applied Energy, Elsevier, vol. 111(C), pages 1-15.
    10. De Bellis, Vincenzo, 2016. "Performance optimization of a spark-ignition turbocharged VVA engine under knock limited operation," Applied Energy, Elsevier, vol. 164(C), pages 162-174.
    11. Oh, Seungjae & Wang, Semyung & Cho, Sungman, 2015. "Development of Energy Efficiency Design Map based on acoustic resonance frequency of suction muffler in compressor," Applied Energy, Elsevier, vol. 150(C), pages 233-244.
    12. Bo Liu & Fuwu Yan & Jie Hu & Richard Fiifi Turkson & Feng Lin, 2016. "Modeling and Multi-Objective Optimization of NO x Conversion Efficiency and NH 3 Slip for a Diesel Engine," Sustainability, MDPI, vol. 8(5), pages 1-13, May.
    13. Wang, Delu & Tong, Xian & Wang, Yadong, 2020. "An early risk warning system for Outward Foreign Direct Investment in Mineral Resource-based enterprises using multi-classifiers fusion," Resources Policy, Elsevier, vol. 66(C).
    14. Tadros, M. & Ventura, M. & Guedes Soares, C., 2019. "Optimization procedure to minimize fuel consumption of a four-stroke marine turbocharged diesel engine," Energy, Elsevier, vol. 168(C), pages 897-908.
    15. Yu, Xunzhao & Zhu, Ling & Wang, Yan & Filev, Dimitar & Yao, Xin, 2022. "Internal combustion engine calibration using optimization algorithms," Applied Energy, Elsevier, vol. 305(C).
    16. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2016. "Multi-stage and multi-objective optimization for energy retrofitting a developed hospital reference building: A new approach to assess cost-optimality," Applied Energy, Elsevier, vol. 174(C), pages 37-68.
    17. Ahmadi, Mohammad H. & Ahmadi, Mohammad Ali & Sadatsakkak, Seyed Abbas & Feidt, Michel, 2015. "Connectionist intelligent model estimates output power and torque of stirling engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 871-883.
    18. Duro, João A. & Ozturk, Umud Esat & Oara, Daniel C. & Salomon, Shaul & Lygoe, Robert J. & Burke, Richard & Purshouse, Robin C., 2023. "Methods for constrained optimization of expensive mixed-integer multi-objective problems, with application to an internal combustion engine design problem," European Journal of Operational Research, Elsevier, vol. 307(1), pages 421-446.
    19. Khosravi, A. & Machado, L. & Nunes, R.O., 2018. "Time-series prediction of wind speed using machine learning algorithms: A case study Osorio wind farm, Brazil," Applied Energy, Elsevier, vol. 224(C), pages 550-566.
    20. Wang, Ligang & Yang, Yongping & Dong, Changqing & Morosuk, Tatiana & Tsatsaronis, George, 2014. "Multi-objective optimization of coal-fired power plants using differential evolution," Applied Energy, Elsevier, vol. 115(C), pages 254-264.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:1:p:72-:d:62107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.