IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v103y2013icp712-720.html
   My bibliography  Save this article

Process intensification for biodiesel production from Jatropha curcas L. seeds: Supercritical reactive extraction process parameters study

Author

Listed:
  • Lim, Steven
  • Lee, Keat Teong

Abstract

In a bid to increase the cost competitiveness of biodiesel production against mineral diesel, process intensification has been studied for numerous biodiesel processing technologies. Subsequently, reactive extraction or in situ transesterification is actively being explored in which the solid oil-bearing seeds are used as the reactant directly with short-chain alcohol. This eliminates separate oil extraction process and combines both extraction and transesterification in a single unit. Supercritical reactive extraction takes one step further by substituting the role of catalyst with supercritical conditions to achieve higher yield and shorter processing time. In this work, supercritical reactive extraction with methanol was carried out in a high-pressure batch reactor to produce fatty acid methyl esters (FAMEs) from Jatropha curcas L. seeds. Material and process parameters including space loading, solvent to seed ratio, co-solvent (n-hexane) to seed ratio, reaction temperature, reaction time and mixing intensity were varied one at a time and optimized based on two responses i.e. extraction efficiency, Mextract and FAME yield, Fy. The optimum responses for supercritical reactive extraction obtained were 104.17% w/w and 99.67% w/w (relative to 100% lipid extraction with n-hexane) for Mextract and Fy respectively under the following conditions: 54.0ml/g space loading, 5.0ml/g methanol to seeds ratio, 300°C, 9.5MPa (Mega Pascal), 30min reaction time and without n-hexane as co-solvent or any agitation source. This proved that supercritical reactive extraction is rather promising as another alternative for biodiesel production.

Suggested Citation

  • Lim, Steven & Lee, Keat Teong, 2013. "Process intensification for biodiesel production from Jatropha curcas L. seeds: Supercritical reactive extraction process parameters study," Applied Energy, Elsevier, vol. 103(C), pages 712-720.
  • Handle: RePEc:eee:appene:v:103:y:2013:i:c:p:712-720
    DOI: 10.1016/j.apenergy.2012.11.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912008173
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.11.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiu, Fengxian & Li, Yihuai & Yang, Dongya & Li, Xiaohua & Sun, Ping, 2011. "Biodiesel production from mixed soybean oil and rapeseed oil," Applied Energy, Elsevier, vol. 88(6), pages 2050-2055, June.
    2. Fernandes, Bartolomeu & Cunha, Jorge & Ferreira, Paula, 2011. "The use of real options approach in energy sector investments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4491-4497.
    3. Atapour, Mehdi & Kariminia, Hamid-Reza, 2011. "Characterization and transesterification of Iranian bitter almond oil for biodiesel production," Applied Energy, Elsevier, vol. 88(7), pages 2377-2381, July.
    4. Santori, Giulio & Di Nicola, Giovanni & Moglie, Matteo & Polonara, Fabio, 2012. "A review analyzing the industrial biodiesel production practice starting from vegetable oil refining," Applied Energy, Elsevier, vol. 92(C), pages 109-132.
    5. Wu, Xuan & Leung, Dennis Y.C., 2011. "Optimization of biodiesel production from camelina oil using orthogonal experiment," Applied Energy, Elsevier, vol. 88(11), pages 3615-3624.
    6. Lim, Steven & Teong, Lee Keat, 2010. "Recent trends, opportunities and challenges of biodiesel in Malaysia: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 938-954, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moncada, J.A. & Junginger, M. & Lukszo, Z. & Faaij, A. & Weijnen, M., 2017. "Exploring path dependence, policy interactions, and actor behavior in the German biodiesel supply chain," Applied Energy, Elsevier, vol. 195(C), pages 370-381.
    2. Sitepu, Eko K. & Heimann, Kirsten & Raston, Colin L. & Zhang, Wei, 2020. "Critical evaluation of process parameters for direct biodiesel production from diverse feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    3. Jazzar, Souhir & Olivares-Carrillo, Pilar & Pérez de los Ríos, Antonia & Marzouki, Mohamed Néjib & Acién-Fernández, Francisco Gabriel & Fernández-Sevilla, José María & Molina-Grima, Emilio & Smaali, I, 2015. "Direct supercritical methanolysis of wet and dry unwashed marine microalgae (Nannochloropsis gaditana) to biodiesel," Applied Energy, Elsevier, vol. 148(C), pages 210-219.
    4. Go, Alchris Woo & Sutanto, Sylviana & Ong, Lu Ki & Tran-Nguyen, Phuong Lan & Ismadji, Suryadi & Ju, Yi-Hsu, 2016. "Developments in in-situ (trans) esterification for biodiesel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 284-305.
    5. Andreo-Martínez, Pedro & Ortiz-Martínez, Víctor Manuel & García-Martínez, Nuria & de los Ríos, Antonia Pérez & Hernández-Fernández, Francisco José & Quesada-Medina, Joaquín, 2020. "Production of biodiesel under supercritical conditions: State of the art and bibliometric analysis," Applied Energy, Elsevier, vol. 264(C).
    6. Xiao, Hanjie & Li, Yizhe & Wang, Hua, 2017. "A stochastic kinetic study of preparing fatty acid from rapeseed oil via subcritical hydrolysis," Applied Energy, Elsevier, vol. 204(C), pages 1084-1093.
    7. Serafin Corral & David Romero Manrique de Lara & Marisa Tejedor Salguero & Carmen Concepción Jimenez Mendoza & David Legna-de la Nuez & María Dorta Santos & Francisco Díaz Peña, 2016. "Assessing Jatropha Crop Production Alternatives in Abandoned Agricultural Arid Soils Using MCA and GIS," Sustainability, MDPI, vol. 8(6), pages 1-16, May.
    8. Go, Alchris Woo & Sutanto, Sylviana & Zullaikah, Siti & Ismadji, Suryadi & Ju, Yi-Hsu, 2016. "A new approach in maximizing and direct utilization of whole Jatropha curcas L. kernels in biodiesel production – Technological improvement," Renewable Energy, Elsevier, vol. 85(C), pages 759-765.
    9. Avhad, M.R. & Marchetti, J.M., 2015. "A review on recent advancement in catalytic materials for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 696-718.
    10. Zimmerman, William B. & Kokoo, Rungrote, 2018. "Esterification for biodiesel production with a phantom catalyst: Bubble mediated reactive distillation," Applied Energy, Elsevier, vol. 221(C), pages 28-40.
    11. Cao, Leichang & Zhang, Shicheng, 2015. "Production and characterization of biodiesel derived from Hodgsonia macrocarpa seed oil," Applied Energy, Elsevier, vol. 146(C), pages 135-140.
    12. Gómez-Castro, F.I. & Gutiérrez-Antonio, C. & Romero-Izquierdo, A.G. & May-Vázquez, M.M. & Hernández, S., 2023. "Intensified technologies for the production of triglyceride-based biofuels: Current status and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    13. Asarudheen Abdudeen & Mohamed Y. E. Selim & Manigandan Sekar & Mahmoud Elgendi, 2023. "Jatropha’s Rapid Developments and Future Opportunities as a Renewable Source of Biofuel—A Review," Energies, MDPI, vol. 16(2), pages 1-28, January.
    14. Lim, Steven & Lee, Keat Teong, 2014. "Investigation of impurity tolerance and thermal stability for biodiesel production from Jatropha curcas L. seeds using supercritical reactive extraction," Energy, Elsevier, vol. 68(C), pages 71-79.
    15. Kavitha Munisamy Sambasivam & Praveen Kuppan & Lafiya Shanavas Laila & Viswanaathan Shashirekha & Krishnamurthi Tamilarasan & Sudharsanam Abinandan, 2023. "Kernel-Based Biodiesel Production from Non-Edible Oil Seeds: Techniques, Optimization, and Environmental Implications," Energies, MDPI, vol. 16(22), pages 1-34, November.
    16. Taherkhani, M. & Sadrameli, S.M., 2018. "An improvement and optimization study of biodiesel production from linseed via in-situ transesterification using a co-solvent," Renewable Energy, Elsevier, vol. 119(C), pages 787-794.
    17. Navarro-Pineda, Freddy S. & Baz-Rodríguez, Sergio A. & Handler, Robert & Sacramento-Rivero, Julio C., 2016. "Advances on the processing of Jatropha curcas towards a whole-crop biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 247-269.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    2. Lian, Shuang & Li, Huijuan & Tang, Jinqiang & Tong, Dongmei & Hu, Changwei, 2012. "Integration of extraction and transesterification of lipid from jatropha seeds for the production of biodiesel," Applied Energy, Elsevier, vol. 98(C), pages 540-547.
    3. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Zarei, Alireza & Noshadi, Iman, 2013. "Transesterification of waste cooking oil by heteropoly acid (HPA) catalyst: Optimization and kinetic model," Applied Energy, Elsevier, vol. 102(C), pages 283-292.
    4. Subramaniam, D. & Murugesan, A. & Avinash, A. & Kumaravel, A., 2013. "Bio-diesel production and its engine characteristics—An expatiate view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 361-370.
    5. Blanco-Marigorta, A.M. & Suárez-Medina, J. & Vera-Castellano, A., 2013. "Exergetic analysis of a biodiesel production process from Jatropha curcas," Applied Energy, Elsevier, vol. 101(C), pages 218-225.
    6. Atadashi, I.M. & Aroua, M.K. & Aziz, A.R. Abdul & Sulaiman, N.M.N., 2011. "Refining technologies for the purification of crude biodiesel," Applied Energy, Elsevier, vol. 88(12), pages 4239-4251.
    7. Lam, Man Kee & Lee, Keat Teong, 2012. "Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production," Applied Energy, Elsevier, vol. 94(C), pages 303-308.
    8. Valle-Rodríguez, Juan Octavio & Shi, Shuobo & Siewers, Verena & Nielsen, Jens, 2014. "Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid ethyl esters, an advanced biofuel, by eliminating non-essential fatty acid utilization pathways," Applied Energy, Elsevier, vol. 115(C), pages 226-232.
    9. Liu, Chien-Hung & Huang, Chien-Chang & Wang, Yao-Wen & Lee, Duu-Jong & Chang, Jo-Shu, 2012. "Biodiesel production by enzymatic transesterification catalyzed by Burkholderia lipase immobilized on hydrophobic magnetic particles," Applied Energy, Elsevier, vol. 100(C), pages 41-46.
    10. Li, Ji & Peng, Xiao & Luo, Meng & Zhao, Chun-Jian & Gu, Cheng-Bo & Zu, Yuan-Gang & Fu, Yu-Jie, 2014. "Biodiesel production from Camptotheca acuminata seed oil catalyzed by novel Brönsted–Lewis acidic ionic liquid," Applied Energy, Elsevier, vol. 115(C), pages 438-444.
    11. Long, Yun-Duo & Fang, Zhen & Su, Tong-Chao & Yang, Qing, 2014. "Co-production of biodiesel and hydrogen from rapeseed and Jatropha oils with sodium silicate and Ni catalysts," Applied Energy, Elsevier, vol. 113(C), pages 1819-1825.
    12. Mat Yasin, Mohd Hafizil & Mamat, Rizalman & Najafi, G. & Ali, Obed Majeed & Yusop, Ahmad Fitri & Ali, Mohd Hafiz, 2017. "Potentials of palm oil as new feedstock oil for a global alternative fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1034-1049.
    13. Rathmann, Régis & Szklo, Alexandre & Schaeffer, Roberto, 2012. "Targets and results of the Brazilian Biodiesel Incentive Program – Has it reached the Promised Land?," Applied Energy, Elsevier, vol. 97(C), pages 91-100.
    14. Jahirul, M.I. & Rasul, M.G. & Brown, R.J. & Senadeera, W. & Hosen, M.A. & Haque, R. & Saha, S.C. & Mahlia, T.M.I., 2021. "Investigation of correlation between chemical composition and properties of biodiesel using principal component analysis (PCA) and artificial neural network (ANN)," Renewable Energy, Elsevier, vol. 168(C), pages 632-646.
    15. Yin, Xiulian & Ma, Haile & You, Qinghong & Wang, Zhenbin & Chang, Jinke, 2012. "Comparison of four different enhancing methods for preparing biodiesel through transesterification of sunflower oil," Applied Energy, Elsevier, vol. 91(1), pages 320-325.
    16. Maleki, Esmat & Aroua, Mohamed Kheireddine & Sulaiman, Nik Meriam Nik, 2013. "Improved yield of solvent free enzymatic methanolysis of palm and jatropha oils blended with castor oil," Applied Energy, Elsevier, vol. 104(C), pages 905-909.
    17. Gude, Veera Gnaneswar & Grant, Georgene Elizabeth, 2013. "Biodiesel from waste cooking oils via direct sonication," Applied Energy, Elsevier, vol. 109(C), pages 135-144.
    18. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    19. Panneerselvam, N. & Murugesan, A. & Vijayakumar, C. & Kumaravel, A. & Subramaniam, D. & Avinash, A., 2015. "Effects of injection timing on bio-diesel fuelled engine characteristics—An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 17-31.
    20. Budžaki, Sandra & Miljić, Goran & Tišma, Marina & Sundaram, Smitha & Hessel, Volker, 2017. "Is there a future for enzymatic biodiesel industrial production in microreactors?," Applied Energy, Elsevier, vol. 201(C), pages 124-134.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:103:y:2013:i:c:p:712-720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.