IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v258y2020ics0306261919317520.html
   My bibliography  Save this article

Pressure drop modeling and performance optimization of a humidification–dehumidification desalination system

Author

Listed:
  • Huang, Xin
  • Ke, Tingfen
  • Yu, Xiangqian
  • Liu, Weihong
  • Li, Yang
  • Ling, Xiang

Abstract

In this study, the thermodynamic and pressure drop models of the humidification–dehumidification (HDH) system are developed and verified by the experimental results. The effect of operating parameters on the system performance is investigated. The parametric analysis indicates that the optimum point of the energy efficiency may appear in some cases. The pressure drop in the system increases with the air and liquid mass flow rates and the liquid top temperature. The influence of electric consumption on the system overall performance is evaluated from the different point of view (energy and exergy). In terms of energy consumption, the proportion of electric consumption in the total energy consumption is small with an average of 9.9%. The effect of electric energy consumption is negligible in many cases. In terms of exergy consumption, the average proportion of electric consumption is 29.4%, and the highest is 40.6%. The electric energy consumption has significant influences on the overall energy efficiency. Furthermore, numerical optimization is performed to achieve the minimum specific exergy consumption (SEXC). It can be concluded that, in the performance optimization of the HDH system, the priority is to adjust the liquid mass flow rate and liquid top temperature. The minimum values of the optimized SEXC are 222.0 kJ/kg.

Suggested Citation

  • Huang, Xin & Ke, Tingfen & Yu, Xiangqian & Liu, Weihong & Li, Yang & Ling, Xiang, 2020. "Pressure drop modeling and performance optimization of a humidification–dehumidification desalination system," Applied Energy, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:appene:v:258:y:2020:i:c:s0306261919317520
    DOI: 10.1016/j.apenergy.2019.114065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919317520
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tariq, Rasikh & Sheikh, Nadeem Ahmed & Xamán, J. & Bassam, A., 2018. "An innovative air saturator for humidification-dehumidification desalination application," Applied Energy, Elsevier, vol. 228(C), pages 789-807.
    2. McGovern, Ronan K. & Thiel, Gregory P. & Prakash Narayan, G. & Zubair, Syed M. & Lienhard, John H., 2013. "Performance limits of zero and single extraction humidification-dehumidification desalination systems," Applied Energy, Elsevier, vol. 102(C), pages 1081-1090.
    3. Han, D. & He, W.F. & Yue, C. & Pu, W.H., 2017. "Study on desalination of zero-emission system based on mechanical vapor compression," Applied Energy, Elsevier, vol. 185(P2), pages 1490-1496.
    4. Ortega-Delgado, Bartolomé & Cornali, Matteo & Palenzuela, Patricia & Alarcón-Padilla, Diego C., 2017. "Operational analysis of the coupling between a multi-effect distillation unit with thermal vapor compression and a Rankine cycle power block using variable nozzle thermocompressors," Applied Energy, Elsevier, vol. 204(C), pages 690-701.
    5. Li, Yang & Huang, Xin & Peng, Hao & Ling, Xiang & Tu, ShanDong, 2018. "Simulation and optimization of humidification-dehumidification evaporation system," Energy, Elsevier, vol. 145(C), pages 128-140.
    6. Gude, Veera Gnaneswar, 2015. "Energy storage for desalination processes powered by renewable energy and waste heat sources," Applied Energy, Elsevier, vol. 137(C), pages 877-898.
    7. Giwa, Adewale & Akther, Nawshad & Housani, Amna Al & Haris, Sabeera & Hasan, Shadi Wajih, 2016. "Recent advances in humidification dehumidification (HDH) desalination processes: Improved designs and productivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 929-944.
    8. Sharon, H. & Reddy, K.S., 2015. "A review of solar energy driven desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1080-1118.
    9. Xiao, Gang & Wang, Xihui & Ni, Mingjiang & Wang, Fei & Zhu, Weijun & Luo, Zhongyang & Cen, Kefa, 2013. "A review on solar stills for brine desalination," Applied Energy, Elsevier, vol. 103(C), pages 642-652.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Xin & Chen, Hu & Ling, Xiang & Liu, Lin & Huhe, Taoli, 2022. "Investigation of heat and mass transfer and gas–liquid thermodynamic process paths in a humidifier," Energy, Elsevier, vol. 261(PA).
    2. Qasem, Naef A.A. & Zubair, Syed M. & Abdallah, Ayman M. & Elbassoussi, Muhammad H. & Ahmed, Mohamed A., 2020. "Novel and efficient integration of a humidification-dehumidification desalination system with an absorption refrigeration system," Applied Energy, Elsevier, vol. 263(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qiushi & Liang, Shen & Zhu, Ziye & Wu, Gang & Su, Yuehong & Zheng, Hongfei, 2019. "Performance of seawater-filling type planting system based on solar distillation process: Numerical and experimental investigation," Applied Energy, Elsevier, vol. 250(C), pages 1225-1234.
    2. Huang, Xin & Chen, Hu & Ling, Xiang & Liu, Lin & Huhe, Taoli, 2022. "Investigation of heat and mass transfer and gas–liquid thermodynamic process paths in a humidifier," Energy, Elsevier, vol. 261(PA).
    3. Anand, B. & Shankar, R. & Murugavelh, S. & Rivera, W. & Midhun Prasad, K. & Nagarajan, R., 2021. "A review on solar photovoltaic thermal integrated desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Tariq, Rasikh & Sheikh, Nadeem Ahmed & Xamán, J. & Bassam, A., 2018. "An innovative air saturator for humidification-dehumidification desalination application," Applied Energy, Elsevier, vol. 228(C), pages 789-807.
    5. Sharshir, S.W. & Peng, Guilong & Wu, Lirong & Essa, F.A. & Kabeel, A.E. & Yang, Nuo, 2017. "The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance," Applied Energy, Elsevier, vol. 191(C), pages 358-366.
    6. Sayyaadi, Hoseyn & Ghorbani, Ghadir, 2018. "Conceptual design and optimization of a small-scale dual power-desalination system based on the Stirling prime-mover," Applied Energy, Elsevier, vol. 223(C), pages 457-471.
    7. Rasikh Tariq & Jacinto Torres Jimenez & Nadeem Ahmed Sheikh & Sohail Khan, 2020. "Mathematical Approach to Improve the Thermoeconomics of a Humidification Dehumidification Solar Desalination System," Mathematics, MDPI, vol. 9(1), pages 1-31, December.
    8. Kim, Jungbin & Park, Kiho & Yang, Dae Ryook & Hong, Seungkwan, 2019. "A comprehensive review of energy consumption of seawater reverse osmosis desalination plants," Applied Energy, Elsevier, vol. 254(C).
    9. Mito, Mohamed T. & Ma, Xianghong & Albuflasa, Hanan & Davies, Philip A., 2019. "Reverse osmosis (RO) membrane desalination driven by wind and solar photovoltaic (PV) energy: State of the art and challenges for large-scale implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 669-685.
    10. Chen, Q. & Kum Ja, M. & Li, Y. & Chua, K.J., 2018. "Evaluation of a solar-powered spray-assisted low-temperature desalination technology," Applied Energy, Elsevier, vol. 211(C), pages 997-1008.
    11. Prado de Nicolás, Amanda & Molina-García, Ángel & García-Bermejo, Juan Tomás & Vera-García, Francisco, 2023. "Desalination, minimal and zero liquid discharge powered by renewable energy sources: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    12. Esmaeil Ahmadi & Benjamin McLellan & Behnam Mohammadi-Ivatloo & Tetsuo Tezuka, 2020. "The Role of Renewable Energy Resources in Sustainability of Water Desalination as a Potential Fresh-Water Source: An Updated Review," Sustainability, MDPI, vol. 12(13), pages 1-31, June.
    13. Elsayed, Mohamed L. & Mesalhy, Osama & Mohammed, Ramy H. & Chow, Louis C., 2019. "Performance modeling of MED-MVC systems: Exergy-economic analysis," Energy, Elsevier, vol. 166(C), pages 552-568.
    14. Esmaeil Ahmadi & Benjamin McLellan & Seiichi Ogata & Behnam Mohammadi-Ivatloo & Tetsuo Tezuka, 2020. "An Integrated Planning Framework for Sustainable Water and Energy Supply," Sustainability, MDPI, vol. 12(10), pages 1-37, May.
    15. Ahmadi, Esmaeil & McLellan, Benjamin & Tezuka, Tetsuo, 2020. "The economic synergies of modelling the renewable energy-water nexus towards sustainability," Renewable Energy, Elsevier, vol. 162(C), pages 1347-1366.
    16. Juan Ríos-Arriola & Nicolás Velázquez & Jesús Armando Aguilar-Jiménez & Germán Eduardo Dévora-Isiordia & Cristian Ascención Cásares-de la Torre & José Armando Corona-Sánchez & Saúl Islas, 2022. "State of the Art of Desalination in Mexico," Energies, MDPI, vol. 15(22), pages 1-23, November.
    17. Wang, Qiushi & Zhu, Ziye & Wu, Gang & Zhang, Xiang & Zheng, Hongfei, 2018. "Energy analysis and experimental verification of a solar freshwater self-produced ecological film floating on the sea," Applied Energy, Elsevier, vol. 224(C), pages 510-526.
    18. Mauro Luberti & Mauro Capocelli, 2023. "Enhanced Humidification–Dehumidification (HDH) Systems for Sustainable Water Desalination," Energies, MDPI, vol. 16(17), pages 1-28, September.
    19. Calise, Francesco & Cappiello, Francesco Liberato & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Economic assessment of renewable energy systems integrating photovoltaic panels, seawater desalination and water storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Eveloy, Valérie & Rodgers, Peter & Qiu, Linyue, 2016. "Performance investigation of a power, heating and seawater desalination poly-generation scheme in an off-shore oil field," Energy, Elsevier, vol. 98(C), pages 26-39.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:258:y:2020:i:c:s0306261919317520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.