IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i11p4042-4054.html
   My bibliography  Save this article

An optimization model for a mechanical vapor compression desalination plant driven by a wind/PV hybrid system

Author

Listed:
  • Zejli, Driss
  • Ouammi, Ahmed
  • Sacile, Roberto
  • Dagdougui, Hanane
  • Elmidaoui, Azzeddine

Abstract

A renewable hybrid system to produce domestic water is presented. It consists of a photovoltaic module, a wind turbine, a mechanical vapor compression desalination plant and a storage unit. An optimization model based on a mathematical programming is developed to control the energy flows exchanged among the system components in order to satisfy the domestic water demand. The model has been solved for three specific case studies in Morocco, where two of them are located in Rabat which aim to satisfy the hourly and monthly water demand of 20 households, whereas, the last one is in Essaouira, which aims to ensure the monthly water demand of 40 households. The main motivations behind selecting these specific case studies are the evaluation of the efficiency and feasibility of such system in two coastal sites having different characteristics of renewable energy sources. The obtained results show that the domestic water demands are satisfied in each time interval at a reasonable economic cost comparable to the current average cost of water in Morocco which is about 0.7€m−3.

Suggested Citation

  • Zejli, Driss & Ouammi, Ahmed & Sacile, Roberto & Dagdougui, Hanane & Elmidaoui, Azzeddine, 2011. "An optimization model for a mechanical vapor compression desalination plant driven by a wind/PV hybrid system," Applied Energy, Elsevier, vol. 88(11), pages 4042-4054.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:11:p:4042-4054
    DOI: 10.1016/j.apenergy.2011.04.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911002534
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.04.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tchanche, B.F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2010. "Exergy analysis of micro-organic Rankine power cycles for a small scale solar driven reverse osmosis desalination system," Applied Energy, Elsevier, vol. 87(4), pages 1295-1306, April.
    2. Gastli, Adel & Charabi, Yassine & Zekri, Slim, 2010. "GIS-based assessment of combined CSP electric power and seawater desalination plant for Duqum--Oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 821-827, February.
    3. Gude, Veera Gnaneswar & Nirmalakhandan, Nagamany & Deng, Shuguang, 2010. "Renewable and sustainable approaches for desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2641-2654, December.
    4. Colangelo, A. & Marano, D. & Spagna, G. & Sharma, V. K., 1999. "Photovoltaic powered reverse osmosis sea-water desalination systems," Applied Energy, Elsevier, vol. 64(1-4), pages 289-305, September.
    5. Al Suleimani, Zaher & Nair, V. Rajendran, 2000. "Desalination by solar-powered reverse osmosis in a remote area of the Sultanate of Oman," Applied Energy, Elsevier, vol. 65(1-4), pages 367-380, April.
    6. Arjunan, T.V. & Aybar, H.S. & Nedunchezhian, N., 2009. "Status of solar desalination in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2408-2418, December.
    7. Ouammi, Ahmed & Sacile, Roberto & Zejli, Driss & Mimet, Abdelaziz & Benchrifa, Rachid, 2010. "Sustainability of a wind power plant: Application to different Moroccan sites," Energy, Elsevier, vol. 35(10), pages 4226-4236.
    8. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    9. Narayan, G. Prakash & Sharqawy, Mostafa H. & Summers, Edward K. & Lienhard, John H. & Zubair, Syed M. & Antar, M.A., 2010. "The potential of solar-driven humidification-dehumidification desalination for small-scale decentralized water production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1187-1201, May.
    10. Al-Karaghouli, Ali & Renne, David & Kazmerski, Lawrence L., 2009. "Solar and wind opportunities for water desalination in the Arab regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2397-2407, December.
    11. Kalogirou, Soteris, 1998. "Use of parabolic trough solar energy collectors for sea-water desalination," Applied Energy, Elsevier, vol. 60(2), pages 65-88, June.
    12. Bourouni, K. & Ben M’Barek, T. & Al Taee, A., 2011. "Design and optimization of desalination reverse osmosis plants driven by renewable energies using genetic algorithms," Renewable Energy, Elsevier, vol. 36(3), pages 936-950.
    13. Ouammi, Ahmed & Dagdougui, Hanane & Sacile, Roberto & Mimet, Abdelaziz, 2010. "Monthly and seasonal assessment of wind energy characteristics at four monitored locations in Liguria region (Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1959-1968, September.
    14. Mahmoudi, Hacene & Abdellah, Ouagued & Ghaffour, Noreddine, 2009. "Capacity building strategies and policy for desalination using renewable energies in Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 921-926, May.
    15. Sayyaadi, Hoseyn & Saffari, Arash, 2010. "Thermoeconomic optimization of multi effect distillation desalination systems," Applied Energy, Elsevier, vol. 87(4), pages 1122-1133, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carta, José A. & González, Jaime & Cabrera, Pedro & Subiela, Vicente J., 2015. "Preliminary experimental analysis of a small-scale prototype SWRO desalination plant, designed for continuous adjustment of its energy consumption to the widely varying power generated by a stand-alon," Applied Energy, Elsevier, vol. 137(C), pages 222-239.
    2. Han, D. & He, W.F. & Yue, C. & Pu, W.H., 2017. "Study on desalination of zero-emission system based on mechanical vapor compression," Applied Energy, Elsevier, vol. 185(P2), pages 1490-1496.
    3. Sharon, H. & Reddy, K.S., 2015. "A review of solar energy driven desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1080-1118.
    4. Chen, Yih-Hang & Li, Yu-Wei & Chang, Hsuan, 2012. "Optimal design and control of solar driven air gap membrane distillation desalination systems," Applied Energy, Elsevier, vol. 100(C), pages 193-204.
    5. Gude, Veera Gnaneswar, 2015. "Energy storage for desalination processes powered by renewable energy and waste heat sources," Applied Energy, Elsevier, vol. 137(C), pages 877-898.
    6. Dubreuil, Aurelie & Assoumou, Edi & Bouckaert, Stephanie & Selosse, Sandrine & Maı¨zi, Nadia, 2013. "Water modeling in an energy optimization framework – The water-scarce middle east context," Applied Energy, Elsevier, vol. 101(C), pages 268-279.
    7. Prado de Nicolás, Amanda & Molina-García, Ángel & García-Bermejo, Juan Tomás & Vera-García, Francisco, 2023. "Desalination, minimal and zero liquid discharge powered by renewable energy sources: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    8. Rostamzadeh, Hadi, 2021. "A new pre-concentration scheme for brine treatment of MED-MVC desalination plants towards low-liquid discharge (LLD) with multiple self-superheating," Energy, Elsevier, vol. 225(C).
    9. Elsayed, Mohamed L. & Mesalhy, Osama & Mohammed, Ramy H. & Chow, Louis C., 2019. "Transient and thermo-economic analysis of MED-MVC desalination system," Energy, Elsevier, vol. 167(C), pages 283-296.
    10. Elsayed, Mohamed L. & Mesalhy, Osama & Mohammed, Ramy H. & Chow, Louis C., 2019. "Performance modeling of MED-MVC systems: Exergy-economic analysis," Energy, Elsevier, vol. 166(C), pages 552-568.
    11. Ariana M. Pietrasanta & Mostafa F. Shaaban & Pio A. Aguirre & Sergio F. Mussati & Mohamed A. Hamouda, 2023. "Simulation and Optimization of Renewable Energy-Powered Desalination: A Bibliometric Analysis and Highlights of Recent Research," Sustainability, MDPI, vol. 15(12), pages 1-28, June.
    12. Smaoui, Mariem & Krichen, Lotfi, 2016. "Control, energy management and performance evaluation of desalination unit based renewable energies using a graphical user interface," Energy, Elsevier, vol. 114(C), pages 1187-1206.
    13. Shang, Yizi & Hei, Pengfei & Lu, Shibao & Shang, Ling & Li, Xiaofei & Wei, Yongping & Jia, Dongdong & Jiang, Dong & Ye, Yuntao & Gong, Jiaguo & Lei, Xiaohui & Hao, Mengmeng & Qiu, Yaqin & Liu, Jiahong, 2018. "China’s energy-water nexus: Assessing water conservation synergies of the total coal consumption cap strategy until 2050," Applied Energy, Elsevier, vol. 210(C), pages 643-660.
    14. Calise, Francesco & Cappiello, Francesco Liberato & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Economic assessment of renewable energy systems integrating photovoltaic panels, seawater desalination and water storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Lukač, Niko & Žlaus, Danijel & Seme, Sebastijan & Žalik, Borut & Štumberger, Gorazd, 2013. "Rating of roofs’ surfaces regarding their solar potential and suitability for PV systems, based on LiDAR data," Applied Energy, Elsevier, vol. 102(C), pages 803-812.
    16. Hossain, M.J. & Saha, T.K. & Mithulananthan, N. & Pota, H.R., 2012. "Robust control strategy for PV system integration in distribution systems," Applied Energy, Elsevier, vol. 99(C), pages 355-362.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chennan & Goswami, Yogi & Stefanakos, Elias, 2013. "Solar assisted sea water desalination: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 136-163.
    2. Calise, Francesco & Cappiello, Francesco Liberato & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Economic assessment of renewable energy systems integrating photovoltaic panels, seawater desalination and water storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Carta, José A. & González, Jaime & Cabrera, Pedro & Subiela, Vicente J., 2015. "Preliminary experimental analysis of a small-scale prototype SWRO desalination plant, designed for continuous adjustment of its energy consumption to the widely varying power generated by a stand-alon," Applied Energy, Elsevier, vol. 137(C), pages 222-239.
    4. Fernandez-Gonzalez, C. & Dominguez-Ramos, A. & Ibañez, R. & Irabien, A., 2015. "Sustainability assessment of electrodialysis powered by photovoltaic solar energy for freshwater production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 604-615.
    5. Manju, S. & Sagar, Netramani, 2017. "Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 594-609.
    6. Schäfer, Andrea I. & Hughes, Gordon & Richards, Bryce S., 2014. "Renewable energy powered membrane technology: A leapfrog approach to rural water treatment in developing countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 542-556.
    7. Wu, Jun W. & Hu, Eric J. & Biggs, Mark J., 2012. "Thermodynamic cycles of adsorption desalination system," Applied Energy, Elsevier, vol. 90(1), pages 316-322.
    8. Gude, Veera Gnaneswar, 2015. "Energy storage for desalination processes powered by renewable energy and waste heat sources," Applied Energy, Elsevier, vol. 137(C), pages 877-898.
    9. Sharon, H. & Reddy, K.S., 2015. "A review of solar energy driven desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1080-1118.
    10. Ali, Muhammad Tauha & Fath, Hassan E.S. & Armstrong, Peter R., 2011. "A comprehensive techno-economical review of indirect solar desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4187-4199.
    11. Rahman, Syed Masiur & Khondaker, A.N., 2012. "Mitigation measures to reduce greenhouse gas emissions and enhance carbon capture and storage in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2446-2460.
    12. Plappally, A.K. & Lienhard V, J.H., 2012. "Energy requirements for water production, treatment, end use, reclamation, and disposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4818-4848.
    13. El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.
    14. Chakrabarti, Mohammed Harun & Mjalli, Farouq Sabri & AlNashef, Inas Muen & Hashim, Mohd. Ali & Hussain, Mohd. Azlan & Bahadori, Laleh & Low, Chee Tong John, 2014. "Prospects of applying ionic liquids and deep eutectic solvents for renewable energy storage by means of redox flow batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 254-270.
    15. Abhishek Tiwari & Manish K. Rathod & Amit Kumar, 2023. "A comprehensive review of solar-driven desalination systems and its advancements," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1052-1083, February.
    16. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    17. Iskander Tlili, 2015. "Renewable energy in Saudi Arabia: current status and future potentials," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(4), pages 859-886, August.
    18. David Severin Ryberg & Martin Robinius & Detlef Stolten, 2018. "Evaluating Land Eligibility Constraints of Renewable Energy Sources in Europe," Energies, MDPI, vol. 11(5), pages 1-19, May.
    19. Hussein M. Maghrabie & Abdul Ghani Olabi & Ahmed Rezk & Ali Radwan & Abdul Hai Alami & Mohammad Ali Abdelkareem, 2023. "Energy Storage for Water Desalination Systems Based on Renewable Energy Resources," Energies, MDPI, vol. 16(7), pages 1-34, March.
    20. Kasaeian, Alibakhsh & Rajaee, Fatemeh & Yan, Wei-Mon, 2019. "Osmotic desalination by solar energy: A critical review," Renewable Energy, Elsevier, vol. 134(C), pages 1473-1490.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:11:p:4042-4054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.