IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v51y2012i1p73-92.html
   My bibliography  Save this article

Valuing equity-linked death benefits and other contingent options: A discounted density approach

Author

Listed:
  • Gerber, Hans U.
  • Shiu, Elias S.W.
  • Yang, Hailiang

Abstract

Motivated by the Guaranteed Minimum Death Benefits in various deferred annuities, we investigate the calculation of the expected discounted value of a payment at the time of death. The payment depends on the price of a stock at that time and possibly also on the history of the stock price. If the payment turns out to be the payoff of an option, we call the contract for the payment a (life) contingent option. Because each time-until-death distribution can be approximated by a combination of exponential distributions, the analysis is made for the case where the time until death is exponentially distributed, i.e., under the assumption of a constant force of mortality. The time-until-death random variable is assumed to be independent of the stock price process which is a geometric Brownian motion. Our key tool is a discounted joint density function. A substantial series of closed-form formulas is obtained, for the contingent call and put options, for lookback options, for barrier options, for dynamic fund protection, and for dynamic withdrawal benefits. In a section on several stocks, the method of Esscher transforms proves to be useful for finding among others an explicit result for valuing contingent Margrabe options or exchange options. For the case where the contracts have a finite expiry date, closed-form formulas are found for the contingent call and put options. From these, results for De Moivre’s law are obtained as limits. We also discuss equity-linked death benefit reserves and investment strategies for maintaining such reserves. The elasticity of the reserve with respect to the stock price plays an important role. Whereas in the most important applications the stopping time is the time of death, it could be different in other applications, for example, the time of the next catastrophe.

Suggested Citation

  • Gerber, Hans U. & Shiu, Elias S.W. & Yang, Hailiang, 2012. "Valuing equity-linked death benefits and other contingent options: A discounted density approach," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 73-92.
  • Handle: RePEc:eee:insuma:v:51:y:2012:i:1:p:73-92
    DOI: 10.1016/j.insmatheco.2012.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668712000303
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2012.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gerber, Hans U. & Shiu, Elias S. W., 1996. "Actuarial bridges to dynamic hedging and option pricing," Insurance: Mathematics and Economics, Elsevier, vol. 18(3), pages 183-218, November.
    2. Goldman, M Barry & Sosin, Howard B & Gatto, Mary Ann, 1979. "Path Dependent Options: "Buy at the Low, Sell at the High"," Journal of Finance, American Finance Association, vol. 34(5), pages 1111-1127, December.
    3. Bacinello, Anna Rita & Millossovich, Pietro & Olivieri, Annamaria & Pitacco, Ermanno, 2011. "Variable annuities: A unifying valuation approach," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 285-297.
    4. Ulm, Eric R., 2008. "Analytic Solution for Return of Premium and Rollup Guaranteed Minimum Death Benefit Options Under Some Simple Mortality Laws," ASTIN Bulletin, Cambridge University Press, vol. 38(2), pages 543-563, November.
    5. Hans Gerber & Gérard Pafumi, 2000. "Pricing Dynamic Investment Fund Protection," North American Actuarial Journal, Taylor & Francis Journals, vol. 4(2), pages 28-37.
    6. Daniel Dufresne, 2007. "Fitting combinations of exponentials to probability distributions," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 23(1), pages 23-48, January.
    7. Hans Gerber & Elias Shiu, 2003. "Pricing Lookback Options and Dynamic Guarantees," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(1), pages 48-66.
    8. Eric R. Ulm, 2006. "The Effect of the Real Option to Transfer on the Value of Guaranteed Minimum Death Benefits," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(1), pages 43-69, March.
    9. Shang, Zhaoning & Goovaerts, Marc & Dhaene, Jan, 2011. "A recursive approach to mortality-linked derivative pricing," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 240-248, September.
    10. Lee, Hangsuck, 2003. "Pricing equity-indexed annuities with path-dependent options," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 677-690, December.
    11. Daniel Dufresne, 2007. "Stochastic Life Annuities," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(1), pages 136-157.
    12. Ko, Bangwon & Shiu, Elias S.W. & Wei, Li, 2010. "Pricing maturity guarantee with dynamic withdrawal benefit," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 216-223, October.
    13. Serena Tiong, 2000. "Valuing Equity-Indexed Annuities," North American Actuarial Journal, Taylor & Francis Journals, vol. 4(4), pages 149-163.
    14. Hans Gerber & Elias Shiu, 2003. "Pricing Perpetual Fund Protection with Withdrawal Option," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(2), pages 60-77.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Xiaoqing & Tsai, Cary Chi-Liang & Lu, Yi, 2016. "Valuing guaranteed equity-linked contracts under piecewise constant forces of mortality," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 150-161.
    2. Gerber, Hans U. & Shiu, Elias S.W. & Yang, Hailiang, 2015. "Geometric stopping of a random walk and its applications to valuing equity-linked death benefits," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 313-325.
    3. Zhou, Jiang & Wu, Lan, 2015. "The time of deducting fees for variable annuities under the state-dependent fee structure," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 125-134.
    4. Lee, Hangsuck & Kim, Eunchae & Ko, Bangwon, 2022. "Valuing lookback options with barrier," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    5. Han, Heejae & Jeon, Junkee & Kang, Myungjoo, 2016. "Pricing chained dynamic fund protection," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 267-278.
    6. Yaodi Yong & Hailiang Yang, 2021. "Valuation of Cliquet-Style Guarantees with Death Benefits in Jump Diffusion Models," Mathematics, MDPI, vol. 9(16), pages 1-21, August.
    7. Ko, Bangwon & Shiu, Elias S.W. & Wei, Li, 2010. "Pricing maturity guarantee with dynamic withdrawal benefit," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 216-223, October.
    8. Lee, Hangsuck & Ha, Hongjun & Lee, Minha, 2023. "Partial quanto lookback options," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
    9. Chiu, Yu-Fen & Hsieh, Ming-Hua & Tsai, Chenghsien, 2019. "Valuation and analysis on complex equity indexed annuities," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    10. Gan, Guojun, 2013. "Application of data clustering and machine learning in variable annuity valuation," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 795-801.
    11. Qian, Linyi & Wang, Wei & Wang, Rongming & Tang, Yincai, 2010. "Valuation of equity-indexed annuity under stochastic mortality and interest rate," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 123-129, October.
    12. Ulm, Eric R., 2014. "Analytic solution for ratchet guaranteed minimum death benefit options under a variety of mortality laws," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 14-23.
    13. R. Guy Thomas, 2023. "Long-term option pricing with a lower reflecting barrier," Papers 2302.05808, arXiv.org.
    14. Lee, Hangsuck & Ko, Bangwon & Song, Seongjoo, 2019. "Valuing step barrier options and their icicled variations," The North American Journal of Economics and Finance, Elsevier, vol. 49(C), pages 396-411.
    15. Kijima, Masaaki & Wong, Tony, 2007. "Pricing of Ratchet equity-indexed annuities under stochastic interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 41(3), pages 317-338, November.
    16. Gerber, Hans U. & Shiu, Elias S.W. & Yang, Hailiang, 2013. "Valuing equity-linked death benefits in jump diffusion models," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 615-623.
    17. Lee, Hangsuck, 2003. "Pricing equity-indexed annuities with path-dependent options," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 677-690, December.
    18. Feng, Runhuan & Shimizu, Yasutaka, 2016. "Applications of central limit theorems for equity-linked insurance," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 138-148.
    19. Wong, Hoi Ying & Chan, Chun Man, 2007. "Lookback options and dynamic fund protection under multiscale stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 357-385, May.
    20. V. M. Belyaev, 2011. "Pricing Variable Annuity Contracts with High-Water Mark Feature," Papers 1108.4393, arXiv.org, revised Aug 2011.

    More about this item

    Keywords

    IM10; IE50; IM40; IB10; Equity-linked death benefits; Variable annuities; Minimum guaranteed death benefits; Exponential stopping; Option pricing; Discounted density;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:51:y:2012:i:1:p:73-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.