IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i17p3642-d1223486.html
   My bibliography  Save this article

Kinetic Behavior and Optimal Control of a Fractional-Order Hepatitis B Model

Author

Listed:
  • Tingting Xue

    (School of Mathematics and Physics, Xinjiang Institute of Engineering, Urumqi 830023, China)

  • Xiaolin Fan

    (School of Mathematics and Physics, Xinjiang Institute of Engineering, Urumqi 830023, China)

  • Yan Xu

    (School of Mathematics and Physics, Xinjiang Institute of Engineering, Urumqi 830023, China)

Abstract

The fractional-order calculus model is suitable for describing real-world problems that contain non-local effects and have memory genetic effects. Based on the definition of the Caputo derivative, the article proposes a class of fractional hepatitis B epidemic model with a general incidence rate. Firstly, the existence, uniqueness, positivity and boundedness of model solutions, basic reproduction number, equilibrium points, and local stability of equilibrium points are studied employing fractional differential equation theory, stability theory, and infectious disease dynamics theory. Secondly, the fractional necessary optimality conditions for fractional optimal control problems are derived by applying the Pontryagin maximum principle. Finally, the optimization simulation results of fractional optimal control problem are discussed. To control the spread of the hepatitis B virus, three control variables (isolation, treatment, and vaccination) are applied, and the optimal control theory is used to formulate the optimal control strategy. Specifically, by isolating infected and non-infected people, treating patients, and vaccinating susceptible people at the same time, the number of hepatitis B patients can be minimized, the number of recovered people can be increased, and the purpose of ultimately eliminating the transmission of hepatitis B virus can be achieved.

Suggested Citation

  • Tingting Xue & Xiaolin Fan & Yan Xu, 2023. "Kinetic Behavior and Optimal Control of a Fractional-Order Hepatitis B Model," Mathematics, MDPI, vol. 11(17), pages 1-18, August.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:17:p:3642-:d:1223486
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/17/3642/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/17/3642/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khan, Tahir & Khan, Amir & Zaman, Gul, 2018. "The extinction and persistence of the stochastic hepatitis B epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 123-128.
    2. Ameen, I. & Baleanu, Dumitru & Ali, Hegagi Mohamed, 2020. "An efficient algorithm for solving the fractional optimal control of SIRV epidemic model with a combination of vaccination and treatment," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    3. Shah, Kamal & Khalil, Hammad & Khan, Rahmat Ali, 2015. "Investigation of positive solution to a coupled system of impulsive boundary value problems for nonlinear fractional order differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 240-246.
    4. Anwarud Din & Yongjin Li & Abdullahi Yusuf & Aliyu Isa Ali, 2022. "Caputo Type Fractional Operator Applied To Hepatitis B System," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 30(01), pages 1-11, February.
    5. Khan, Tahir & Ullah, Zakir & Ali, Nigar & Zaman, Gul, 2019. "Modeling and control of the hepatitis B virus spreading using an epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 1-9.
    6. Din, Anwarud & Li, Yongjin & Yusuf, Abdullahi, 2021. "Delayed hepatitis B epidemic model with stochastic analysis," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoang, Manh Tuan, 2023. "Dynamical analysis of a generalized hepatitis B epidemic model and its dynamically consistent discrete model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 291-314.
    2. Wu, Shuying & Yuan, Sanling & Lan, Guijie & Zhang, Tonghua, 2024. "Understanding the dynamics of hepatitis B transmission: A stochastic model with vaccination and Ornstein-Uhlenbeck process," Applied Mathematics and Computation, Elsevier, vol. 476(C).
    3. Li, Xiao-Ping & Din, Anwarud & Zeb, Anwar & Kumar, Sunil & Saeed, Tareq, 2022. "The impact of Lévy noise on a stochastic and fractal-fractional Atangana–Baleanu order hepatitis B model under real statistical data," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    4. Juhui Yan & Wanqin Wu & Qing Miao & Xuewen Tan, 2024. "Global Dynamics and Optimal Control of a Fractional-Order SIV Epidemic Model with Nonmonotonic Occurrence Rate," Mathematics, MDPI, vol. 12(17), pages 1-21, September.
    5. Fatima, Bibi & Zaman, Gul, 2020. "Co-infection of Middle Eastern respiratory syndrome coronavirus and pulmonary tuberculosis," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    6. Rafia Majeed & Binlin Zhang & Mehboob Alam, 2023. "Fractional Langevin Coupled System with Stieltjes Integral Conditions," Mathematics, MDPI, vol. 11(10), pages 1-14, May.
    7. Mohamed Hannabou & Hilal Khalid, 2019. "Investigation of a Mild Solution to Coupled Systems of Impulsive Hybrid Fractional Differential Equations," International Journal of Differential Equations, Hindawi, vol. 2019, pages 1-9, December.
    8. Hussain, Ghulam & Khan, Amir & Zahri, Mostafa & Zaman, Gul, 2022. "Ergodic stationary distribution of stochastic epidemic model for HBV with double saturated incidence rates and vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    9. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    10. Mohammadi, Hakimeh & Kumar, Sunil & Rezapour, Shahram & Etemad, Sina, 2021. "A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    11. Sayed Murad Ali Shah & Yufeng Nie & Anwarud Din & Abdulwasea Alkhazzan, 2024. "Dynamics of Hepatitis B Virus Transmission with a Lévy Process and Vaccination Effects," Mathematics, MDPI, vol. 12(11), pages 1-24, May.
    12. Abboubakar, Hamadjam & Kombou, Lausaire Kemayou & Koko, Adamou Dang & Fouda, Henri Paul Ekobena & Kumar, Anoop, 2021. "Projections and fractional dynamics of the typhoid fever: A case study of Mbandjock in the Centre Region of Cameroon," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    13. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    14. Yuan, Yiran & Li, Ning, 2022. "Optimal control and cost-effectiveness analysis for a COVID-19 model with individual protection awareness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    15. Asamoah, Joshua Kiddy K. & Fatmawati,, 2023. "A fractional mathematical model of heartwater transmission dynamics considering nymph and adult amblyomma ticks," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    16. Defterli, Ozlem, 2021. "Comparative analysis of fractional order dengue model with temperature effect via singular and non-singular operators," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    17. Muhammad Shoaib & Kamal Shah & Rahmat Ali Khan, 2017. "On Applications Of Coupled Fixed -Point Theorem In Hybrid Differential Equations Of Arbitrary Order," Matrix Science Mathematic (MSMK), Zibeline International Publishing, vol. 1(2), pages 17-21, November.
    18. Moualkia, Seyfeddine, 2023. "Mathematical analysis of new variant Omicron model driven by Lévy noise and with variable-order fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    19. Han, Bingtao & Jiang, Daqing, 2022. "Stationary distribution, extinction and density function of a stochastic prey-predator system with general anti-predator behavior and fear effect," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    20. Din, Anwarud, 2024. "Bifurcation analysis of a delayed stochastic HBV epidemic model: Cell-to-cell transmission," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:17:p:3642-:d:1223486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.