IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i16p2890-d886571.html
   My bibliography  Save this article

Dynamics Analysis of a Predator–Prey Model with Hunting Cooperative and Nonlinear Stochastic Disturbance

Author

Listed:
  • Yuke Zhang

    (College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China)

  • Xinzhu Meng

    (College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China)

Abstract

This paper proposes a stochastic predator–prey model with hunting cooperation and nonlinear stochastic disturbance, and focuses on the effects of nonlinear white noise and hunting cooperation on the populations. First, we present the thresholds R 1 and R 2 for extinction and persistence in mean of the predator. When R 1 is less than 0, the predator population is extinct; when R 2 is greater than 0, the predator population is persistent in mean. Moreover, by establishing suitable Lyapunov functions, we investigate the threshold R 0 for the existence of a unique ergodic stationary distribution. At last, we carry out the numerical simulations. The results show that white noise is harmful to the populations and hunting cooperation is beneficial to the predator population.

Suggested Citation

  • Yuke Zhang & Xinzhu Meng, 2022. "Dynamics Analysis of a Predator–Prey Model with Hunting Cooperative and Nonlinear Stochastic Disturbance," Mathematics, MDPI, vol. 10(16), pages 1-18, August.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:16:p:2890-:d:886571
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/16/2890/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/16/2890/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meng, Xinzhu & Li, Fei & Gao, Shujing, 2018. "Global analysis and numerical simulations of a novel stochastic eco-epidemiological model with time delay," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 701-726.
    2. Lu, Chun, 2022. "Dynamical analysis and numerical simulations on a crowley-Martin predator-prey model in stochastic environment," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    3. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2018. "Stationary distribution and extinction of a stochastic predator–prey model with additional food and nonlinear perturbation," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 226-239.
    4. Qi, Haokun & Meng, Xinzhu, 2021. "Mathematical modeling, analysis and numerical simulation of HIV: The influence of stochastic environmental fluctuations on dynamics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 700-719.
    5. Rana, Sourav & Bhattacharya, Sabyasachi & Samanta, Sudip, 2022. "Spatiotemporal dynamics of Leslie–Gower predator–prey model with Allee effect on both populations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 32-49.
    6. Kaur, Rajinder Pal & Sharma, Amit & Sharma, Anuj Kumar, 2021. "Impact of fear effect on plankton-fish system dynamics incorporating zooplankton refuge," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    7. Sk, Nazmul & Tiwari, Pankaj Kumar & Pal, Samares, 2022. "A delay nonautonomous model for the impacts of fear and refuge in a three species food chain model with hunting cooperation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 136-166.
    8. Shao, Yuanfu, 2022. "Global stability of a delayed predator–prey system with fear and Holling-type II functional response in deterministic and stochastic environments," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 65-77.
    9. Zhang, Shengqiang & Yuan, Sanling & Zhang, Tonghua, 2022. "A predator-prey model with different response functions to juvenile and adult prey in deterministic and stochastic environments," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xingzhi & Tian, Baodan & Xu, Xin & Zhang, Hailan & Li, Dong, 2023. "A stochastic predator–prey system with modified LG-Holling type II functional response," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 449-485.
    2. Liu, Chao & Xun, Xinying & Zhang, Guilai & Li, Yuanke, 2020. "Stochastic dynamics and optimal control in a hybrid bioeconomic system with telephone noise and Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    3. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "A stochastic SIRS epidemic model with logistic growth and general nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    4. Lei Fu & Hongwei Yang, 2019. "An Application of (3+1)-Dimensional Time-Space Fractional ZK Model to Analyze the Complex Dust Acoustic Waves," Complexity, Hindawi, vol. 2019, pages 1-15, August.
    5. Cao, Nan & Fu, Xianlong, 2023. "Stationary distribution and extinction of a Lotka–Volterra model with distribute delay and nonlinear stochastic perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    6. Liu, Qun & Jiang, Daqing, 2023. "Analysis of a stochastic inshore–offshore hairtail fishery model with Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    7. Eva Kaslik & Mihaela Neamţu & Loredana Flavia Vesa, 2021. "Global Stability Analysis of a Five-Dimensional Unemployment Model with Distributed Delay," Mathematics, MDPI, vol. 9(23), pages 1-15, November.
    8. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2019. "Stationary distribution of a regime-switching predator–prey model with anti-predator behaviour and higher-order perturbations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 199-210.
    9. Dongmei Yuan & Yuzhen Bai, 2019. "Stability of Traveling Wave Fronts for a Three Species Predator-Prey Model with Nonlocal Dispersals," Complexity, Hindawi, vol. 2019, pages 1-15, December.
    10. Ruiqing Shi & Ting Lu & Cuihong Wang, 2019. "Dynamic Analysis of a Fractional-Order Model for Hepatitis B Virus with Holling II Functional Response," Complexity, Hindawi, vol. 2019, pages 1-13, August.
    11. Kim, Sangkwon & Park, Jintae & Lee, Chaeyoung & Jeong, Darae & Choi, Yongho & Kwak, Soobin & Kim, Junseok, 2020. "Periodic travelling wave solutions for a reaction-diffusion system on landscape fitted domains," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    12. Pimentel, Carlos Eduardo Hirth & Rodriguez, Pablo M. & Valencia, Leon A., 2020. "A note on a stage-specific predator–prey stochastic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    13. Guo, Xiaoxia & Zhu, Chunjuan & Ruan, Dehao, 2019. "Dynamic behaviors of a predator–prey model perturbed by a complex type of noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1024-1037.
    14. Dezhao Li & Huidong Cheng & Yu Liu, 2019. "Dynamic Analysis of Beddington–DeAngelis Predator-Prey System with Nonlinear Impulse Feedback Control," Complexity, Hindawi, vol. 2019, pages 1-13, November.
    15. Zhou, Baoquan & Jiang, Daqing & Han, Bingtao & Hayat, Tasawar, 2022. "Threshold dynamics and density function of a stochastic epidemic model with media coverage and mean-reverting Ornstein–Uhlenbeck process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 15-44.
    16. Xiaomei Feng & Yuan Miao & Shulin Sun & Lei Wang, 2022. "Dynamic Behaviors of a Stochastic Eco-Epidemiological Model for Viral Infection in the Toxin-Producing Phytoplankton and Zooplankton System," Mathematics, MDPI, vol. 10(8), pages 1-18, April.
    17. Sabbar, Yassine & Kiouach, Driss & Rajasekar, S.P. & El-idrissi, Salim El Azami, 2022. "The influence of quadratic Lévy noise on the dynamic of an SIC contagious illness model: New framework, critical comparison and an application to COVID-19 (SARS-CoV-2) case," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    18. Wenxu Ning & Zhijun Liu & Lianwen Wang & Ronghua Tan, 2021. "Analysis of a Stochastic Competitive Model with Saturation Effect and Distributed Delay," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1435-1459, December.
    19. Zhao, Xin & Zeng, Zhijun, 2020. "Stationary distribution and extinction of a stochastic ratio-dependent predator–prey system with stage structure for the predator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    20. Zhu, Guanghu & Chen, Sixing & Shi, Benyun & Qiu, Hongjun & Xia, Shang, 2019. "Dynamics of echinococcosis transmission among multiple species and a case study in Xinjiang, China," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 103-109.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:16:p:2890-:d:886571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.