IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v184y2024ics0960077924005022.html
   My bibliography  Save this article

Dynamics of a chemostat model with Ornstein–Uhlenbeck process and general response function

Author

Listed:
  • Gao, Miaomiao
  • Jiang, Daqing
  • Ding, Jieyu

Abstract

This paper focuses on the dynamics of a chemostat model with general response function, in which the maximum growth rate of microorganisms is assumed to satisfy the Ornstein–Uhlenbeck process. Under the weak assumption of response function, we first show the existence and uniqueness of the global solution. Then, using the Markov semigroup theory, we establish sufficient condition for the existence of a unique stable stationary distribution. Biologically, the existence of stationary distribution implies the microorganism can survive for a long time. It should be emphasized that we further prove the positive definiteness of the covariance matrix and give the exact expression of probability density function for the distribution. Moreover, sufficient condition for extinction of the microorganism is derived. Finally, some numerical examples are carried out to support the theoretical analysis results.

Suggested Citation

  • Gao, Miaomiao & Jiang, Daqing & Ding, Jieyu, 2024. "Dynamics of a chemostat model with Ornstein–Uhlenbeck process and general response function," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
  • Handle: RePEc:eee:chsofr:v:184:y:2024:i:c:s0960077924005022
    DOI: 10.1016/j.chaos.2024.114950
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924005022
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114950?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:184:y:2024:i:c:s0960077924005022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.