IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1708.01678.html
   My bibliography  Save this paper

On optimal periodic dividend strategies for L\'evy risk processes

Author

Listed:
  • Kei Noba
  • Jos'e-Luis P'erez
  • Kazutoshi Yamazaki
  • Kouji Yano

Abstract

In this paper, we revisit the optimal periodic dividend problem, in which dividend payments can only be made at the jump times of an independent Poisson process. In the dual (spectrally positive L\'evy) model, recent results have shown the optimality of a periodic barrier strategy, which pays dividends at Poissonian dividend-decision times, if and only if the surplus is above some level. In this paper, we show the optimality of this strategy for a spectrally negative L\'evy process whose dual has a completely monotone L\'evy density. The optimal strategies and value functions are concisely written in terms of the scale functions. Numerical results are also provided.

Suggested Citation

  • Kei Noba & Jos'e-Luis P'erez & Kazutoshi Yamazaki & Kouji Yano, 2017. "On optimal periodic dividend strategies for L\'evy risk processes," Papers 1708.01678, arXiv.org, revised Feb 2018.
  • Handle: RePEc:arx:papers:1708.01678
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1708.01678
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tim Leung & Kazutoshi Yamazaki & Hongzhong Zhang, 2015. "An Analytic Recursive Method For Optimal Multiple Stopping: Canadization And Phase-Type Fitting," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1-31.
    2. Loeffen, Ronnie L. & Renaud, Jean-François & Zhou, Xiaowen, 2014. "Occupation times of intervals until first passage times for spectrally negative Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 124(3), pages 1408-1435.
    3. Loeffen, R.L., 2009. "An optimal dividends problem with transaction costs for spectrally negative Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 41-48, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjamin Avanzi & Hayden Lau & Bernard Wong, 2020. "Optimal periodic dividend strategies for spectrally negative L\'evy processes with fixed transaction costs," Papers 2004.01838, arXiv.org, revised Dec 2020.
    2. Benjamin Avanzi & Hayden Lau & Bernard Wong, 2020. "On the optimality of joint periodic and extraordinary dividend strategies," Papers 2006.00717, arXiv.org, revised Dec 2020.
    3. Chongrui Zhu, 2022. "On the closed-form expected NPVs of double barrier strategies for regular diffusions," Papers 2206.08922, arXiv.org, revised Dec 2022.
    4. Zbigniew Palmowski & Jos'e Luis P'erez & Budhi Arta Surya & Kazutoshi Yamazaki, 2019. "The Leland-Toft optimal capital structure model under Poisson observations," Papers 1904.03356, arXiv.org, revised Mar 2020.
    5. Zbigniew Palmowski & José Luis Pérez & Budhi Arta Surya & Kazutoshi Yamazaki, 2020. "The Leland–Toft optimal capital structure model under Poisson observations," Finance and Stochastics, Springer, vol. 24(4), pages 1035-1082, October.
    6. Avanzi, Benjamin & Lau, Hayden & Wong, Bernard, 2020. "Optimal periodic dividend strategies for spectrally positive Lévy risk processes with fixed transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 315-332.
    7. Avanzi, Benjamin & Lau, Hayden & Wong, Bernard, 2021. "On the optimality of joint periodic and extraordinary dividend strategies," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1189-1210.
    8. Teng, Ye & Zhang, Zhimin, 2023. "Finite-time expected present value of operating costs until ruin in a Cox risk model with periodic observation," Applied Mathematics and Computation, Elsevier, vol. 452(C).
    9. Liu, Zhang & Chen, Ping & Hu, Yijun, 2020. "On the dual risk model with diffusion under a mixed dividend strategy," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    10. Benjamin Avanzi & Hayden Lau & Bernard Wong, 2020. "Optimal periodic dividend strategies for spectrally positive L\'evy risk processes with fixed transaction costs," Papers 2003.13275, arXiv.org, revised May 2020.
    11. Zbigniew Palmowski & Jos'e Luis P'erez & Kazutoshi Yamazaki, 2020. "Double continuation regions for American options under Poisson exercise opportunities," Papers 2004.03330, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zbigniew Palmowski & José Luis Pérez & Budhi Arta Surya & Kazutoshi Yamazaki, 2020. "The Leland–Toft optimal capital structure model under Poisson observations," Finance and Stochastics, Springer, vol. 24(4), pages 1035-1082, October.
    2. Noba, Kei & Pérez, José-Luis & Yamazaki, Kazutoshi & Yano, Kouji, 2018. "On optimal periodic dividend strategies for Lévy risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 80(C), pages 29-44.
    3. Jos'e-Luis P'erez & Kazutoshi Yamazaki & Alain Bensoussan, 2018. "Optimal periodic replenishment policies for spectrally positive L\'evy demand processes," Papers 1806.09216, arXiv.org, revised Sep 2020.
    4. Avanzi, Benjamin & Lau, Hayden & Wong, Bernard, 2020. "Optimal periodic dividend strategies for spectrally positive Lévy risk processes with fixed transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 315-332.
    5. Long, Mingsi & Zhang, Hongzhong, 2019. "On the optimality of threshold type strategies in single and recursive optimal stopping under Lévy models," Stochastic Processes and their Applications, Elsevier, vol. 129(8), pages 2821-2849.
    6. Zbigniew Palmowski & José Luis Pérez & Kazutoshi Yamazaki, 2021. "Double continuation regions for American options under Poisson exercise opportunities," Mathematical Finance, Wiley Blackwell, vol. 31(2), pages 722-771, April.
    7. Czarna, Irmina & Pérez, José-Luis & Yamazaki, Kazutoshi, 2018. "Optimality of multi-refraction control strategies in the dual model," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 148-160.
    8. Benjamin Avanzi & Hayden Lau & Bernard Wong, 2020. "Optimal periodic dividend strategies for spectrally positive L\'evy risk processes with fixed transaction costs," Papers 2003.13275, arXiv.org, revised May 2020.
    9. Mingsi Long & Hongzhong Zhang, 2017. "On the optimality of threshold type strategies in single and recursive optimal stopping under L\'evy models," Papers 1707.07797, arXiv.org, revised Aug 2018.
    10. Neofytos Rodosthenous & Hongzhong Zhang, 2020. "When to sell an asset amid anxiety about drawdowns," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1422-1460, October.
    11. Loeffen, Ronnie L. & Renaud, Jean-François & Zhou, Xiaowen, 2014. "Occupation times of intervals until first passage times for spectrally negative Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 124(3), pages 1408-1435.
    12. Czarna, Irmina & Renaud, Jean-François, 2016. "A note on Parisian ruin with an ultimate bankruptcy level for Lévy insurance risk processes," Statistics & Probability Letters, Elsevier, vol. 113(C), pages 54-61.
    13. Liang, Zhibin & Young, Virginia R., 2012. "Dividends and reinsurance under a penalty for ruin," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 437-445.
    14. Wenyuan Wang & Yuebao Wang & Ping Chen & Xueyuan Wu, 2022. "Dividend and Capital Injection Optimization with Transaction Cost for Lévy Risk Processes," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 924-965, September.
    15. Ewa Marciniak & Zbigniew Palmowski, 2018. "On the Optimal Dividend Problem in the Dual Model with Surplus-Dependent Premiums," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 533-552, November.
    16. Yin, Chuancun & Wen, Yuzhen, 2013. "Optimal dividend problem with a terminal value for spectrally positive Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 769-773.
    17. Xuebing Kuang & Xiaowen Zhou, 2017. "n -Dimensional Laplace Transforms of Occupation Times for Spectrally Negative Lévy Processes," Risks, MDPI, vol. 5(1), pages 1-14, January.
    18. Bladt, Mogens & Ivanovs, Jevgenijs, 2021. "Fluctuation theory for one-sided Lévy processes with a matrix-exponential time horizon," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 105-123.
    19. Tao Sun & Xinqiu Zhang, 2024. "Laplace Transformation of the Ruin Time for a Risk Model with a Parisian Implementation Delay," Mathematics, MDPI, vol. 12(4), pages 1-12, February.
    20. Masahiko Egami & Kazutoshi Yamazaki, 2010. "Solving Optimal Dividend Problems via Phase-Type Fitting Approximation of Scale Functions," Discussion papers e-10-011, Graduate School of Economics Project Center, Kyoto University.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1708.01678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.