IDEAS home Printed from https://ideas.repec.org/a/taf/sactxx/v2019y2019i5p355-386.html
   My bibliography  Save this article

Potential measures and expected present value of operating costs until ruin in renewal risk models with general interclaim times

Author

Listed:
  • Eric C.K. Cheung
  • Runhuan Feng

Abstract

In this paper, a Sparre Andersen risk process with arbitrary interclaim time distribution is considered. We analyze various ruin-related quantities in relation to the expected present value of total operating costs until ruin, which was first proposed by Cai et al. [(2009a). On the expectation of total discounted operating costs up to default and its applications. Advances in Applied Probability 41(2), 495–522] in the piecewise-deterministic compound Poisson risk model. The analysis in this paper is applicable to a wide range of quantities including (i) the insurer's expected total discounted utility until ruin; and (ii) the expected discounted aggregate claim amounts until ruin. On one hand, when claims belong to the class of combinations of exponentials, explicit results are obtained using the ruin theoretic approach of conditioning on the first drop via discounted densities (e.g. Willmot [(2007). On the discounted penalty function in the renewal risk model with general interclaim times. Insurance: Mathematics and Economics 41(1), 17–31]). On the other hand, without any distributional assumption on the claims, we also show that the expected present value of total operating costs until ruin can be expressed in terms of some potential measures, which are common tools in the literature of Lévy processes (e.g. Kyprianou [(2014). Fluctuations of L'evy processes with applications: introductory lectures, 2nd ed. Berlin Heidelberg: Springer-Verlag]). These potential measures are identified in terms of the discounted distributions of ascending and descending ladder heights. We shall demonstrate how the formulas resulting from the two seemingly different methods can be reconciled. The cases of (i) stationary renewal risk model and (ii) surplus-dependent premium are briefly discussed as well. Some interesting invariance properties in the former model are shown to hold true, extending a well-known ruin probability result in the literature. Numerical illustrations concerning the expected total discounted utility until ruin are also provided.

Suggested Citation

  • Eric C.K. Cheung & Runhuan Feng, 2019. "Potential measures and expected present value of operating costs until ruin in renewal risk models with general interclaim times," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2019(5), pages 355-386, May.
  • Handle: RePEc:taf:sactxx:v:2019:y:2019:i:5:p:355-386
    DOI: 10.1080/03461238.2018.1525423
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03461238.2018.1525423
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03461238.2018.1525423?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teng, Ye & Zhang, Zhimin, 2023. "Finite-time expected present value of operating costs until ruin in a Cox risk model with periodic observation," Applied Mathematics and Computation, Elsevier, vol. 452(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:sactxx:v:2019:y:2019:i:5:p:355-386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/sact .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.