IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v422y2022ics0096300322000480.html
   My bibliography  Save this article

Distributed output feedback consensus tracking control of multiple nonholonomic mobile robots with only position information of leader

Author

Listed:
  • Zou, Ying
  • Deng, Chao
  • Dong, Lu
  • Ding, Lei
  • Lu, Ming

Abstract

In this paper, distributed output feedback consensus tracking control of multiple nonholonomic mobile robots with limited information of leader is studied. Different from the existing results, the considered consensus problem has the following features: (i) each robot is described by a second-order dynamic model with parametric uncertainty and external disturbances, (ii) the global information of the directed graphs is not required, (iii) only the position of the leader is available for a subset of robots and thus its velocity information is no longer needed. To solve such a problem, an adaptive output feedback control scheme which involves estimator, observer and controller design is proposed. A fully distributed estimator is constructed to estimate the position of the leader for each robot. Based on the estimated information, an adaptive observer-based output feedback controller is designed to realize consensus tracking. It is shown that the boundedness of all the signals in the resulting closed-loop system is guaranteed, and the consensus tracking error of the system converges to an adjustable neighborhood of zero by appropriately choosing design parameters. Simulation results are provided to verify the effectiveness of the proposed scheme.

Suggested Citation

  • Zou, Ying & Deng, Chao & Dong, Lu & Ding, Lei & Lu, Ming, 2022. "Distributed output feedback consensus tracking control of multiple nonholonomic mobile robots with only position information of leader," Applied Mathematics and Computation, Elsevier, vol. 422(C).
  • Handle: RePEc:eee:apmaco:v:422:y:2022:i:c:s0096300322000480
    DOI: 10.1016/j.amc.2022.126962
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322000480
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.126962?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenjie Dong & Vladimir Djapic, 2016. "Leader-following control of multiple nonholonomic systems over directed communication graphs," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(8), pages 1877-1890, June.
    2. Wang, Yanqian & Chen, Fu & Zhuang, Guangming & Yang, Guang, 2020. "Dynamic event-based mixed H∞ and dissipative asynchronous control for Markov jump singularly perturbed systems," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    3. Chang, Xiao-Heng & Jin, Xue, 2022. "Observer-based fuzzy feedback control for nonlinear systems subject to transmission signal quantization," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    4. Zhao, Xiao-Qi & Guo, Shun & Long, Yue & Zhong, Guang-Xin, 2022. "Simultaneous fault detection and control for discrete-time switched systems under relaxed persistent dwell time switching," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    5. Zhaoxia Peng & Shichun Yang & Guoguang Wen & Ahmed Rahmani, 2014. "Distributed Consensus-Based Robust Adaptive Formation Control for Nonholonomic Mobile Robots with Partial Known Dynamics," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-12, May.
    6. Wenjie Dong, 2012. "Distributed observer-based cooperative control of multiple nonholonomic mobile agents," International Journal of Systems Science, Taylor & Francis Journals, vol. 43(5), pages 797-808.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Shanshan & Zhang, Shenggui & Chen, Xinzhuang & Song, Xiaodi, 2023. "Effects of adding arcs on the consensus convergence rate of leader-follower multi-agent systems," Applied Mathematics and Computation, Elsevier, vol. 453(C).
    2. Xu, Hao & Ju, Hehua & Yu, Meng, 2024. "An innovative joint-space dynamic theory for mobile multi-axis system with unilateral constraint," Applied Mathematics and Computation, Elsevier, vol. 479(C).
    3. Miranda-Colorado, Roger, 2022. "Observer-based proportional integral derivative control for trajectory tracking of wheeled mobile robots with kinematic disturbances," Applied Mathematics and Computation, Elsevier, vol. 432(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Lin & Che, Wei-Wei & Jin, Xiao-Zheng, 2022. "Dynamic event-triggered tracking control for model-free networked control systems," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    2. Chen, Xiang & Li, Shi & Wang, Ronghao & Xiang, Zhengrong, 2023. "Event-Triggered output feedback adaptive control for nonlinear switched interconnected systems with unknown control coefficients," Applied Mathematics and Computation, Elsevier, vol. 445(C).
    3. Zhou, Xin & Chen, Guici & Zhu, Song & Wen, Shiping, 2023. "Distributed event-triggered finite-time H∞ filtering for switched systems on sensor networks with two-channel network attacks and asynchronous modes," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    4. Xing, Mingqi & Wang, Yanqian & Zhuang, Guangming & Chen, Fu, 2021. "Event-based asynchronous and resilient filtering for singular Markov jump LPV systems against deception attacks," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    5. Sakthivel, Ramalingam & Sakthivel, Rathinasamy & Kwon, Oh-Min & Selvaraj, Palanisamy, 2021. "Disturbance rejection for singular semi-Markov jump neural networks with input saturation," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    6. Zhimin Li & Chengming Lu & Hongyu Wang, 2023. "Non-Fragile Fuzzy Tracking Control for Nonlinear Networked Systems with Dynamic Quantization and Randomly Occurring Gain Variations," Mathematics, MDPI, vol. 11(5), pages 1-20, February.
    7. Mathiyalagan, K. & Nidhi, A. Shree & Su, H. & Renugadevi, T., 2022. "Observer and boundary output feedback control for coupled ODE-transport PDE," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    8. Lu, Ji-Jing & Xiong, Jun, 2024. "Energy-to-peak quantized filtering for T-S fuzzy systems with event-triggered-based weighted try-once-discard protocol: The finite-time case," Applied Mathematics and Computation, Elsevier, vol. 483(C).
    9. Jiao, Ticao & Qi, Xiaomei & Jiang, Jishun & Yu, Mingzheng, 2022. "Noise-input-to-state stability analysis of switching stochastic nonlinear systems with mode-dependent multiple impulses," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    10. Chen, Zongjie & Zhang, Yigang & Kong, Qingkai & Fang, Ting & Wang, Jing, 2022. "Observer-based H∞ control for persistent dwell-time switched networked nonlinear systems under packet dropout," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    11. Harshavarthini, S. & Kwon, O.M. & Lee, S.M., 2022. "Uncertainty and disturbance estimator-based resilient tracking control design for fuzzy semi-Markovian jump systems," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    12. Wu, Jiacheng & Su, Lei & Li, Shaoming & Wang, Jing & Chen, Xiangyong, 2021. "Extended dissipative filtering for singularly perturbed systems with random uncertain measurement: A double-layer switching mechanism," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    13. Guo, Yaxiao & Li, Junmin & Duan, Ruirui, 2021. "Extended dissipativity-based control for persistent dwell-time switched singularly perturbed systems and its application to electronic circuits," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    14. Hu, Yifan & Liu, Wenhui & Liu, Guobao, 2022. "Adaptive finite‐time event‐triggered control for uncertain nonlinearly parameterized systems with unknown control direction and actuator failures," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    15. Zhu, Zhibin & Wang, Fuyong & Yin, Yanhui & Liu, Zhongxin & Chen, Zengqiang, 2022. "Distributed fault-tolerant containment control for a class of non-linear multi-agent systems via event-triggered mechanism," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    16. Ma, Yong-Sheng & Che, Wei-Wei & Deng, Chao, 2022. "Observer-Based fuzzy containment control for nonlinear networked mass under dos attacks," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    17. Lee, Won Il & Park, Bum Yong & Kim, Sung Hyun, 2022. "Relaxed observer-based stabilization and dissipativity conditions of T-S fuzzy systems with nonhomogeneous Markov jumps via non-PDC scheme," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    18. Zhao, Yinghong & Ma, Yuechao, 2021. "Asynchronous H∞ control for hidden singular Markov jump systems with incomplete transition probabilities via state decomposition approach," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    19. Fan, Yanyan & Jin, Zhenlin & Luo, Xiaoyuan & Guo, Baosu, 2022. "Robust finite-time consensus control for Euler–Lagrange multi-agent systems subject to switching topologies and uncertainties," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    20. Ren, Yingying & Ding, Da-Wei & Long, Yue, 2023. "Finite-frequency fixed-order dynamic output-feedback control via a homogeneous polynomially parameter-dependent technique," Applied Mathematics and Computation, Elsevier, vol. 441(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:422:y:2022:i:c:s0096300322000480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.