IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v441y2023ics0096300322007494.html
   My bibliography  Save this article

Finite-frequency fixed-order dynamic output-feedback control via a homogeneous polynomially parameter-dependent technique

Author

Listed:
  • Ren, Yingying
  • Ding, Da-Wei
  • Long, Yue

Abstract

This paper investigates the problem of fixed-order dynamic output-feedback (DOF) control for linear polytopic systems over finite-frequency ranges. Firstly, based on the generalized Kalman–Yakubovich-Popov lemma, we formulate the necessary and sufficient conditions for the finite-frequency disturbance-attenuation performance as bilinear matrix inequalities (BMIs), which are known to be NP-hard. In light of the homogeneous polynomially parameter-dependent technique, we construct relaxed synthesis conditions by employing higher-order decision variables dependent on the uncertainty parameter. To address the BMI problem, we develop an iterative procedure, under which feasible solutions to the original non-convex programming are achieved by vicariously solving a sequence of tractable convex approximations. Finally, we verify the efficacy of the theoretical results by an active suspension system.

Suggested Citation

  • Ren, Yingying & Ding, Da-Wei & Long, Yue, 2023. "Finite-frequency fixed-order dynamic output-feedback control via a homogeneous polynomially parameter-dependent technique," Applied Mathematics and Computation, Elsevier, vol. 441(C).
  • Handle: RePEc:eee:apmaco:v:441:y:2023:i:c:s0096300322007494
    DOI: 10.1016/j.amc.2022.127681
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322007494
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127681?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Ziwei & Chen, Zongjie & Sheng, Zhang & Li, Dan & Wang, Jing, 2022. "Static output feedback secure synchronization control for Markov jump neural networks under hybrid cyber-attacks," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    2. Chang, Xiao-Heng & Xiong, Jun & Park, Ju H., 2016. "Fuzzy robust dynamic output feedback control of nonlinear systems with linear fractional parametric uncertainties," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 213-225.
    3. Wang, Yudong & Xia, Jianwei & Wang, Zhen & Shen, Hao, 2020. "Design of a fault-tolerant output-feedback controller for thickness control in cold rolling mills," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    4. Chang, Xiao-Heng & Jin, Xue, 2022. "Observer-based fuzzy feedback control for nonlinear systems subject to transmission signal quantization," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaoqing & Nguang, Sing Kiong & She, Kun & Cheng, Jun & Zhong, Shouming, 2021. "Resilient controller synthesis for Markovian jump systems with probabilistic faults and gain fluctuations under stochastic sampling operational mechanism," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    2. Zhu, Lin & Che, Wei-Wei & Jin, Xiao-Zheng, 2022. "Dynamic event-triggered tracking control for model-free networked control systems," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    3. Chen, Xiang & Li, Shi & Wang, Ronghao & Xiang, Zhengrong, 2023. "Event-Triggered output feedback adaptive control for nonlinear switched interconnected systems with unknown control coefficients," Applied Mathematics and Computation, Elsevier, vol. 445(C).
    4. Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    5. Sakthivel, Rathinasamy & Suveetha, V.T. & Nithya, Venkatesh & Sakthivel, Ramalingam, 2020. "Finite-time fault detection filter design for complex systems with multiple stochastic communication and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    6. Zhimin Li & Chengming Lu & Hongyu Wang, 2023. "Non-Fragile Fuzzy Tracking Control for Nonlinear Networked Systems with Dynamic Quantization and Randomly Occurring Gain Variations," Mathematics, MDPI, vol. 11(5), pages 1-20, February.
    7. Mathiyalagan, K. & Nidhi, A. Shree & Su, H. & Renugadevi, T., 2022. "Observer and boundary output feedback control for coupled ODE-transport PDE," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    8. Zhang, Zhiming & Zheng, Wei & Lam, H.K. & Wen, Shuhuan & Sun, Fuchun & Xie, Ping, 2020. "Stability analysis and output feedback control for stochastic networked systems with multiple communication delays and nonlinearities using fuzzy control technique," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    9. Kwon, O.M. & Lee, S.H. & Park, M.J. & Lee, S.M., 2020. "Augmented zero equality approach to stability for linear systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 381(C).
    10. Jiao, Ticao & Qi, Xiaomei & Jiang, Jishun & Yu, Mingzheng, 2022. "Noise-input-to-state stability analysis of switching stochastic nonlinear systems with mode-dependent multiple impulses," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    11. Liang, Tiantian & Shi, Shengli & Ma, Yuechao, 2023. "Asynchronous sliding mode control of continuous-time singular markov jump systems with time-varying delay under event-triggered strategy," Applied Mathematics and Computation, Elsevier, vol. 448(C).
    12. Harshavarthini, S. & Kwon, O.M. & Lee, S.M., 2022. "Uncertainty and disturbance estimator-based resilient tracking control design for fuzzy semi-Markovian jump systems," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    13. Jorge Muñoz & Francesco Piqué & Concepción A. Monje & Egidio Falotico, 2021. "Robust Fractional-Order Control Using a Decoupled Pitch and Roll Actuation Strategy for the I-Support Soft Robot," Mathematics, MDPI, vol. 9(7), pages 1-16, March.
    14. Xiao, Shuyi & Dong, Jiuxiang, 2023. "Distributed output-feedback resilient fault-tolerant tracking control of uncertain heterogeneous linear MASs under directed topologies and DoS attacks," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    15. Hu, Yifan & Liu, Wenhui & Liu, Guobao, 2022. "Adaptive finite‐time event‐triggered control for uncertain nonlinearly parameterized systems with unknown control direction and actuator failures," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    16. Mei, Yu & Wang, Guanqi & Shen, Hao, 2023. "Adaptive Event-Triggered L2−L∞ Control of Semi-Markov Jump Distributed Parameter Systems," Applied Mathematics and Computation, Elsevier, vol. 439(C).
    17. Wang, Xi & Ju, Yamei & Ding, Derui & Liu, Hongjian, 2024. "Cooperative fault-tolerant tracking control for multi-agent systems: A multiple description encoding scheme," Applied Mathematics and Computation, Elsevier, vol. 462(C).
    18. Ma, Yong-Sheng & Che, Wei-Wei & Deng, Chao, 2022. "Observer-Based fuzzy containment control for nonlinear networked mass under dos attacks," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    19. Wang, Jiancheng & He, Shuping & Luan, Xiaoli & Liu, Fei, 2020. "Fuzzy fault detection of conic-type nonlinear systems within the finite frequency domain," Applied Mathematics and Computation, Elsevier, vol. 378(C).
    20. Fu, Xiaoyu & Song, Xinmin & Liu, Xiyu & Zhang, Min, 2023. "Distributed state estimation with state equality constraints in the presence of packet dropping," Applied Mathematics and Computation, Elsevier, vol. 451(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:441:y:2023:i:c:s0096300322007494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.