IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v475y2024ics0096300324001796.html
   My bibliography  Save this article

Time-varying formation of uncertain nonlinear multi-agent systems via adaptive feedback control approach with event-triggered impulsive estimator

Author

Listed:
  • Xu, Ziqiang
  • Li, Yun
  • Zhan, Xisheng
  • Yan, Huaicheng
  • Han, Yiyan

Abstract

The time-varying formation problem under directed topology is investigated for the uncertain nonlinear multi-agent systems (MASs) via the neural networks-based adaptive feedback control (NNAFC). Compared with the simple adaptive control, the designed control protocol consists of two parts: NNAFC and the event-triggered impulsive estimator. To save communication costs, communications among followers are only carried out at discrete instants determined by the event-triggered impulsive rule. Two kinds of estimators and controllers are designed for two cases with or without communication delay, respectively. Further, NNAFC can be further improved to eliminate errors due to uncertain function approximation for some special cases. Utilizing the Lyapunov stability theory and impulsive control theory, we obtain some sufficient conditions to implement time-varying formation task. Finally, three examples are given to show the feasibility of theoretical analysis.

Suggested Citation

  • Xu, Ziqiang & Li, Yun & Zhan, Xisheng & Yan, Huaicheng & Han, Yiyan, 2024. "Time-varying formation of uncertain nonlinear multi-agent systems via adaptive feedback control approach with event-triggered impulsive estimator," Applied Mathematics and Computation, Elsevier, vol. 475(C).
  • Handle: RePEc:eee:apmaco:v:475:y:2024:i:c:s0096300324001796
    DOI: 10.1016/j.amc.2024.128707
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324001796
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128707?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Baoxing & Han, Tao & Xiao, Bo & Zhan, Xi-Sheng & Yan, Huaicheng, 2022. "Leader-following bipartite consensus of multiple uncertain Euler-Lagrange systems under deception attacks," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    2. Wu, Hongjuan & Li, Chuandong & He, Zhilong & Wang, Yinuo & He, Yingying, 2021. "Lag synchronization of nonlinear dynamical systems via asymmetric saturated impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Chen, Qi-Xin & Chang, Xiao-Heng, 2022. "Resilient filter of nonlinear network systems with dynamic event-triggered mechanism and hybrid cyber attack," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    4. Sun, Fenglan & Wang, Rui & Zhu, Wei & Li, Yongfu, 2019. "Flocking in nonlinear multi-agent systems with time-varying delay via event-triggered control," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 66-77.
    5. He, Zhilong & Li, Chuandong & Li, Yi & Cao, Zhengran & Zhang, Xiaoyu, 2021. "Local synchronization of nonlinear dynamical networks with hybrid impulsive saturation control inputs," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    6. Chang, Xiao-Heng & Jin, Xue, 2022. "Observer-based fuzzy feedback control for nonlinear systems subject to transmission signal quantization," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    7. Yang, Haijiao & Ye, Dan, 2020. "Time-varying formation tracking control for high-order nonlinear multi-agent systems in fixed-time framework," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    8. Yang, Shiju & Li, Chuandong & He, Xiping & Zhang, Wanli, 2022. "Variable-time impulsive control for bipartite synchronization of coupled complex networks with signed graphs," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    9. Tan, Lihua & Li, Chuandong & Huang, Junjian & Huang, Tingwen, 2021. "Output feedback leader-following consensus for nonlinear stochastic multiagent systems: The event-triggered method," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    10. Wang, Wei & Huang, Chi & Huang, Chuangxia & Cao, Jinde & Lu, Jianquan & Wang, Li, 2020. "Bipartite formation problem of second-order nonlinear multi-agent systems with hybrid impulses," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    11. Wang, Kun-Peng & Ding, Dong & Tang, Ze & Feng, Jianwen, 2022. "Leader-Following consensus of nonlinear multi-agent systems with hybrid delays: Distributed impulsive pinning strategy," Applied Mathematics and Computation, Elsevier, vol. 424(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng Zhang & Chuan Zhang & Fanwei Meng & Yi Liang, 2023. "Event-Triggered Control for Intra/Inter-Layer Synchronization and Quasi-Synchronization in Two-Layer Coupled Networks," Mathematics, MDPI, vol. 11(6), pages 1-15, March.
    2. Yao, Hejun & Gao, Fangzheng & Huang, Jiacai & Wu, Yuqiang, 2021. "Global prescribed-time stabilization via time-scale transformation for switched nonlinear systems subject to switching rational powers," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    3. Xu, Qiyi & Zhang, Ning & Qi, Wenhai, 2023. "Finite-time control for discrete-time nonlinear Markov switching LPV systems with DoS attacks," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    4. Li, Baoxing & Han, Tao & Xiao, Bo & Zhan, Xi-Sheng & Yan, Huaicheng, 2022. "Leader-following bipartite consensus of multiple uncertain Euler-Lagrange systems under deception attacks," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    5. Li, Weihua & Zhang, Huaguang & Wang, Wei & Cao, Zhengbao, 2022. "Fully distributed event-triggered time-varying formation control of multi-agent systems subject to mode-switching denial-of-service attacks," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    6. Gao, Shanshan & Zhang, Shenggui & Chen, Xinzhuang & Song, Xiaodi, 2023. "Effects of adding arcs on the consensus convergence rate of leader-follower multi-agent systems," Applied Mathematics and Computation, Elsevier, vol. 453(C).
    7. Mourad Kchaou & Cecilia Castro & Rabeh Abbassi & VĂ­ctor Leiva & Houssem Jerbi, 2024. "Security Control for a Fuzzy System under Dynamic Protocols and Cyber-Attacks with Engineering Applications," Mathematics, MDPI, vol. 12(13), pages 1-34, July.
    8. Ma, Yong-Sheng & Che, Wei-Wei & Deng, Chao, 2022. "Observer-Based fuzzy containment control for nonlinear networked mass under dos attacks," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    9. Shi, Sangli & Wang, Zhengxin & Song, Qiang & Xiao, Min & Jiang, Guo-Ping, 2022. "Leader-following quasi-bipartite synchronization of coupled heterogeneous harmonic oscillators via event-triggered control," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    10. Miao, Suoxia & Su, Housheng, 2024. "Behaviors of matrix-weighted networks with antagonistic interactions," Applied Mathematics and Computation, Elsevier, vol. 467(C).
    11. Guo, Xinchen & Wei, Guoliang, 2023. "Distributed sliding mode consensus control for multiple discrete-Time Euler-Lagrange systems," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    12. Kaviarasan, Boomipalagan & Kwon, Oh-Min & Park, Myeong Jin & Sakthivel, Rathinasamy, 2021. "Stochastic faulty estimator-based non-fragile tracking controller for multi-agent systems with communication delay," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    13. Ren, Yingying & Ding, Da-Wei & Long, Yue, 2023. "Finite-frequency fixed-order dynamic output-feedback control via a homogeneous polynomially parameter-dependent technique," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    14. Xu, Jiahong & Wang, Lijie & Liu, Yang & Sun, Jize & Pan, Yingnan, 2022. "Finite-time adaptive optimal consensus control for multi-agent systems subject to time-varying output constraints," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    15. Bao, Yuangui & Zhang, Yijun & Zhang, Baoyong, 2021. "Fixed-time synchronization of coupled memristive neural networks via event-triggered control," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    16. Zhu, Hao-Yang & Jiang, Xiaoyue & Li, Yuan-Xin & Tong, Shaocheng, 2023. "Finite-time adaptive fuzzy output tracking of switched nonlinear systems with ISD-ADT," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    17. Sorin Lugojan & Loredana Ciurdariu & Eugenia Grecu, 2022. "Chenciner Bifurcation Presenting a Further Degree of Degeneration," Mathematics, MDPI, vol. 10(9), pages 1-17, May.
    18. Mao, Kun & Liu, Xiaoyang & Cao, Jinde & Hu, Yuanfa, 2022. "Finite-time bipartite synchronization of coupled neural networks with uncertain parameters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    19. Xu, Bingchu & Yang, Yongqing, 2022. "Group consensus of nonlinear multiagent system with switching topology under DoS attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    20. Saravanan Shanmugam & Rajarathinam Vadivel & Nallappan Gunasekaran, 2023. "Finite-Time Synchronization of Quantized Markovian-Jump Time-Varying Delayed Neural Networks via an Event-Triggered Control Scheme under Actuator Saturation," Mathematics, MDPI, vol. 11(10), pages 1-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:475:y:2024:i:c:s0096300324001796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.