IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v142y2021ics0960077920308547.html
   My bibliography  Save this article

Stationary distribution of a stochastic ratio-dependent predator-prey system with regime-switching

Author

Listed:
  • Wang, Zhaojuan
  • Deng, Meiling
  • Liu, Meng

Abstract

This article explores a stochastic ratio-dependent predator-prey model with regime-switching. We testify that the model admits a unique stationary distribution, and demonstrate that the transition probability of the solution of the model converges to the stationary distribution in exponent rate. We also discuss the biological implications of the results by aid of some numerical simulations.

Suggested Citation

  • Wang, Zhaojuan & Deng, Meiling & Liu, Meng, 2021. "Stationary distribution of a stochastic ratio-dependent predator-prey system with regime-switching," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
  • Handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920308547
    DOI: 10.1016/j.chaos.2020.110462
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920308547
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110462?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nguyen, Dang Hai & Yin, George & Zhu, Chao, 2017. "Certain properties related to well posedness of switching diffusions," Stochastic Processes and their Applications, Elsevier, vol. 127(10), pages 3135-3158.
    2. Ji, Chunyan & Jiang, Daqing & Fu, Jing, 2019. "Rich dynamics of a stochastic Michaelis–Menten-type ratio-dependent predator–prey system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    3. Liu, Meng & Bai, Chuanzhi, 2020. "Optimal harvesting of a stochastic mutualism model with regime-switching," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    4. Jingliang Lv & Ke Wang & Dongdong Chen, 2015. "Analysis on a Stochastic Two-Species Ratio-Dependent Predator-Prey Model," Methodology and Computing in Applied Probability, Springer, vol. 17(2), pages 403-418, June.
    5. Li, Dagen & Liu, Meng, 2020. "Invariant measure of a stochastic food-limited population model with regime switching," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 16-26.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Xin & Liu, Lidan & Liu, Meng & Fan, Meng, 2024. "Stochastic dynamics of coral reef system with stage-structure for crown-of-thorns starfish," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    2. Juan Liu & Jie Hu & Peter Yuen & Fuzhong Li, 2022. "A Seasonally Competitive M-Prey and N-Predator Impulsive System Modeled by General Functional Response for Integrated Pest Management," Mathematics, MDPI, vol. 10(15), pages 1-15, July.
    3. Yousef Alnafisah & Moustafa El-Shahed, 2022. "Stochastic Analysis of a Hantavirus Infection Model," Mathematics, MDPI, vol. 10(20), pages 1-15, October.
    4. Lu, Chun & Liu, Honghui & Zhang, De, 2021. "Dynamics and simulations of a second order stochastically perturbed SEIQV epidemic model with saturated incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    5. Lu, Chun, 2022. "Dynamical analysis and numerical simulations on a crowley-Martin predator-prey model in stochastic environment," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    6. Rajchakit, G. & Sriraman, R. & Vignesh, P. & Lim, C.P., 2021. "Impulsive effects on Clifford-valued neural networks with time-varying delays: An asymptotic stability analysis," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    7. Zhang, Shengqiang & Yuan, Sanling & Zhang, Tonghua, 2022. "A predator-prey model with different response functions to juvenile and adult prey in deterministic and stochastic environments," Applied Mathematics and Computation, Elsevier, vol. 413(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Chun, 2021. "Dynamics of a stochastic Markovian switching predator–prey model with infinite memory and general Lévy jumps," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 316-332.
    2. Li, Dagen & Liu, Meng, 2020. "Invariant measure of a stochastic food-limited population model with regime switching," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 16-26.
    3. Rajchakit, G. & Sriraman, R. & Vignesh, P. & Lim, C.P., 2021. "Impulsive effects on Clifford-valued neural networks with time-varying delays: An asymptotic stability analysis," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    4. Xianggang Lu & Lin Sun, 2023. "Discounted Risk-Sensitive Optimal Control of Switching Diffusions: Viscosity Solution and Numerical Approximation," Mathematics, MDPI, vol. 12(1), pages 1-24, December.
    5. Lu, Chun & Liu, Honghui & Zhang, De, 2021. "Dynamics and simulations of a second order stochastically perturbed SEIQV epidemic model with saturated incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Hening, A. & Tran, K. Q. & Ungureanu, S., 2021. "The Effects of Random and Seasonal Environmental Fluctuations on Optimal Harvesting and Stocking," Working Papers 21/05, Department of Economics, City University London.
    7. Liu, Meng & Bai, Chuanzhi, 2020. "Optimal harvesting of a stochastic mutualism model with regime-switching," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    8. Famei Zheng & Guixin Hu, 2022. "Dynamical Behaviors of a Stochastic Single-Species Model with Allee Effects," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1553-1563, September.
    9. Lu, Chun, 2022. "Dynamical analysis and numerical simulations on a crowley-Martin predator-prey model in stochastic environment," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    10. Guirong Liu & Rong Liu, 2019. "Dynamics of a Stochastic Three-Species Food Web Model with Omnivory and Ratio-Dependent Functional Response," Complexity, Hindawi, vol. 2019, pages 1-19, November.
    11. Yang, Huan & Tan, Yuanshun & Yang, Jin & Liu, Zijian, 2021. "Extinction and persistence of a tumor-immune model with white noise and pulsed comprehensive therapy," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 456-470.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920308547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.