Dynamics of a three species food chain model with Crowley–Martin type functional response
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2009.03.020
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Naji, R.K. & Balasim, A.T., 2007. "On the dynamical behavior of three species food web model," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1636-1648.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shivam, & Singh, Kuldeep & Kumar, Mukesh & Dubey, Ramu & Singh, Teekam, 2022. "Untangling role of cooperative hunting among predators and herd behavior in prey with a dynamical systems approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
- Singh, Anuraj & Gakkhar, Sunita, 2015. "Controlling chaos in a food chain model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 115(C), pages 24-36.
- Nitu Kumari & Nishith Mohan, 2019. "Cross Diffusion Induced Turing Patterns in a Tritrophic Food Chain Model with Crowley-Martin Functional Response," Mathematics, MDPI, vol. 7(3), pages 1-25, March.
- Souna, Fethi & Lakmeche, Abdelkader & Djilali, Salih, 2020. "Spatiotemporal patterns in a diffusive predator-prey model with protection zone and predator harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Meng, Xin-You & Huo, Hai-Feng & Xiang, Hong & Yin, Qi-yu, 2014. "Stability in a predator–prey model with Crowley–Martin function and stage structure for prey," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 810-819.
- Zhang, Shengqiang & Yuan, Sanling & Zhang, Tonghua, 2022. "A predator-prey model with different response functions to juvenile and adult prey in deterministic and stochastic environments," Applied Mathematics and Computation, Elsevier, vol. 413(C).
- Drubi, Fátima & Ibáñez, Santiago & Pilarczyk, Paweł, 2021. "Nilpotent singularities and chaos: Tritrophic food chains," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Kumar, Vikas & Kumari, Nitu, 2021. "Bifurcation study and pattern formation analysis of a tritrophic food chain model with group defense and Ivlev-like nonmonotonic functional response," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gupta, R.P. & Yadav, Dinesh K., 2023. "Nonlinear dynamics of a stage-structured interacting population model with honest signals and cues," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
- Zhao, Min & Lv, Songjuan, 2009. "Chaos in a three-species food chain model with a Beddington–DeAngelis functional response," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2305-2316.
- Ivanov, Tihomir & Dimitrova, Neli, 2017. "A predator–prey model with generic birth and death rates for the predator and Beddington–DeAngelis functional response," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 133(C), pages 111-123.
- Florencia Carusela, M. & Momo, Fernando R. & Romanelli, Lilia, 2009. "Competition, predation and coexistence in a three trophic system," Ecological Modelling, Elsevier, vol. 220(19), pages 2349-2352.
- Hiba Abdullah Ibrahim & Raid Kamel Naji, 2023. "The Impact of Fear on a Harvested Prey–Predator System with Disease in a Prey," Mathematics, MDPI, vol. 11(13), pages 1-28, June.
- Cai, Liming & Li, Xuezhi & Yu, Jingyuan & Zhu, Guangtian, 2009. "Dynamics of a nonautonomous predator–prey dispersion–delay system with Beddington–DeAngelis functional response," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 2064-2075.
- Raw, S.N. & Mishra, P. & Kumar, R. & Thakur, S., 2017. "Complex behavior of prey-predator system exhibiting group defense: A mathematical modeling study," Chaos, Solitons & Fractals, Elsevier, vol. 100(C), pages 74-90.
- Kaviya, R. & Priyanka, M. & Muthukumar, P., 2022. "Mean-square exponential stability of impulsive conformable fractional stochastic differential system with application on epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:42:y:2009:i:3:p:1337-1346. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.