IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v83y2013i2p655-664.html
   My bibliography  Save this article

The stationary distribution of the facultative population model with a degenerate noise

Author

Listed:
  • Tong, Jinying
  • Zhang, Zhenzhong
  • Bao, Jianhai

Abstract

In this paper, we consider the stationary distribution of the facultative population model with a degenerate noise. The contributions of this paper lie in: (a) providing sufficient conditions which allow the noise intensity matrix to be degenerate, and, in particular, guarantee the existence and uniqueness of the stationary distribution of our model; (b) discussing the property of positive recurrence of the model and revealing that the associated transition probability function converges exponentially to the unique stationary distribution; (c) showing the integral equation that the Laplace transform of the stationary distribution satisfies.

Suggested Citation

  • Tong, Jinying & Zhang, Zhenzhong & Bao, Jianhai, 2013. "The stationary distribution of the facultative population model with a degenerate noise," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 655-664.
  • Handle: RePEc:eee:stapro:v:83:y:2013:i:2:p:655-664
    DOI: 10.1016/j.spl.2012.11.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212004105
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2012.11.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mao, Xuerong & Marion, Glenn & Renshaw, Eric, 2002. "Environmental Brownian noise suppresses explosions in population dynamics," Stochastic Processes and their Applications, Elsevier, vol. 97(1), pages 95-110, January.
    2. Yuan, Chenggui & Mao, Xuerong, 2003. "Asymptotic stability in distribution of stochastic differential equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 103(2), pages 277-291, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yassine Sabbar & Asad Khan & Anwarud Din, 2022. "Probabilistic Analysis of a Marine Ecological System with Intense Variability," Mathematics, MDPI, vol. 10(13), pages 1-19, June.
    2. ur Rahman, Ghaus & Badshah, Qaisar & Agarwal, Ravi P. & Islam, Saeed, 2021. "Ergodicity & dynamical aspects of a stochastic childhood disease model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 738-764.
    3. Zhang, Zhenzhong & Zhang, Xuekang & Tong, Jinying, 2017. "Exponential ergodicity for population dynamics driven by α-stable processes," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 149-159.
    4. Sabbar, Yassine & Kiouach, Driss & Rajasekar, S.P. & El-idrissi, Salim El Azami, 2022. "The influence of quadratic Lévy noise on the dynamic of an SIC contagious illness model: New framework, critical comparison and an application to COVID-19 (SARS-CoV-2) case," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    5. Sabbar, Yassine & Din, Anwarud & Kiouach, Driss, 2023. "Influence of fractal–fractional differentiation and independent quadratic Lévy jumps on the dynamics of a general epidemic model with vaccination strategy," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    6. Zhao, Dianli & Yuan, Sanling, 2018. "Sharp conditions for the existence of a stationary distribution in one classical stochastic chemostat," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 199-205.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Cheng & Wang, Yan & Jiang, Daqing, 2023. "Dynamics analysis of a stochastic HIV model with non-cytolytic cure and Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    2. Ruichao Li & Xiurong Guo, 2024. "Dynamics of a Stochastic SEIR Epidemic Model with Vertical Transmission and Standard Incidence," Mathematics, MDPI, vol. 12(3), pages 1-17, January.
    3. Huang, Zaitang & Cao, Junfei, 2018. "Ergodicity and bifurcations for stochastic logistic equation with non-Gaussian Lévy noise," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 1-10.
    4. Liu, Qun & Jiang, Daqing & Shi, Ningzhong, 2018. "Threshold behavior in a stochastic SIQR epidemic model with standard incidence and regime switching," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 310-325.
    5. Debasis Mukherjee, 2022. "Stochastic Analysis of an Eco-Epidemic Model with Biological Control," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2539-2555, December.
    6. Han, Bingtao & Jiang, Daqing, 2023. "Coexistence and extinction for a stochastic vegetation-water model motivated by Black–Karasinski process," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    7. Shi, Zhenfeng & Zhang, Xinhong & Jiang, Daqing, 2019. "Dynamics of an avian influenza model with half-saturated incidence," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 399-416.
    8. Zhang, Tian & Chen, Huabin, 2019. "The stability with a general decay of stochastic delay differential equations with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 294-307.
    9. Han, Qixing & Jiang, Daqing, 2015. "Periodic solution for stochastic non-autonomous multispecies Lotka–Volterra mutualism type ecosystem," Applied Mathematics and Computation, Elsevier, vol. 262(C), pages 204-217.
    10. Xi, Fubao, 2009. "Asymptotic properties of jump-diffusion processes with state-dependent switching," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2198-2221, July.
    11. Cao, Boqiang & Shan, Meijing & Zhang, Qimin & Wang, Weiming, 2017. "A stochastic SIS epidemic model with vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 127-143.
    12. Li, Zhi & Zhang, Wei, 2017. "Stability in distribution of stochastic Volterra–Levin equations," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 20-27.
    13. Liu, Meng & Wang, Ke, 2009. "Survival analysis of stochastic single-species population models in polluted environments," Ecological Modelling, Elsevier, vol. 220(9), pages 1347-1357.
    14. Zhai, Xuanpei & Li, Wenshuang & Wei, Fengying & Mao, Xuerong, 2023. "Dynamics of an HIV/AIDS transmission model with protection awareness and fluctuations," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    15. Lu, Chun, 2021. "Dynamics of a stochastic Markovian switching predator–prey model with infinite memory and general Lévy jumps," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 316-332.
    16. Bao, Jianhai & Hou, Zhenting & Yuan, Chenggui, 2009. "Stability in distribution of neutral stochastic differential delay equations with Markovian switching," Statistics & Probability Letters, Elsevier, vol. 79(15), pages 1663-1673, August.
    17. Qi, Kai & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Virus dynamic behavior of a stochastic HIV/AIDS infection model including two kinds of target cell infections and CTL immune responses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 548-570.
    18. Zhao, Shengnan & Yuan, Sanling & Zhang, Tonghua, 2022. "The impact of environmental fluctuations on a plankton model with toxin-producing phytoplankton and patchy agglomeration," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    19. Khasminskii, R.Z. & Zhu, C. & Yin, G., 2007. "Stability of regime-switching diffusions," Stochastic Processes and their Applications, Elsevier, vol. 117(8), pages 1037-1051, August.
    20. Mao, Xuerong & Shen, Yi & Yuan, Chenggui, 2008. "Almost surely asymptotic stability of neutral stochastic differential delay equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 118(8), pages 1385-1406, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:83:y:2013:i:2:p:655-664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.