IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v409y2021ics0096300321005087.html
   My bibliography  Save this article

Composite fault tolerant attitude control for flexible satellite system under disturbance and input delay

Author

Listed:
  • Xu, Xiaofeng
  • Chen, Mou
  • Li, Tao
  • Wu, Qingxian

Abstract

This paper deals with the attitude control problem of flexible satellite system under time-varying disturbance, actuator fault and input time-delay. Initially, in order to compensate for the negative effects of the disturbance and fault, two observer designs are proposed to obtain their estimations, respectively. Secondly, by combining anti-disturbance control, fault tolerant control and time-delay control approaches, a composite delay-dependent controller is presented and an augmented closed-loop system is derived. Then, based on Lyapunov stability theory and linear matrix inequality (LMI) approach, two sufficient conditions on ensuring the asymptotical stability and H∞ performance index are established, in which the observer gains and controller one can be computed by resorting to the Matlab LMI Toolbox. Finally, some simulations and comparisons are provided to illustrate the effectiveness and advantages of the proposed control methods.

Suggested Citation

  • Xu, Xiaofeng & Chen, Mou & Li, Tao & Wu, Qingxian, 2021. "Composite fault tolerant attitude control for flexible satellite system under disturbance and input delay," Applied Mathematics and Computation, Elsevier, vol. 409(C).
  • Handle: RePEc:eee:apmaco:v:409:y:2021:i:c:s0096300321005087
    DOI: 10.1016/j.amc.2021.126419
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321005087
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126419?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiong, Jun & Chang, Xiao-Heng & Yi, Xiaojian, 2018. "Design of robust nonfragile fault detection filter for uncertain dynamic systems with quantization," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 774-788.
    2. Vimal Kumar, S. & Raja, R. & Marshal Anthoni, S. & Cao, Jinde & Tu, Zhengwen, 2018. "Robust finite-time non-fragile sampled-data control for T-S fuzzy flexible spacecraft model with stochastic actuator faults," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 483-497.
    3. Li, Yankai & Chen, Mou & Li, Tao & Shi, Peng, 2020. "Anti-disturbance reference mode resilient dynamic output feedback control for turbofan systems," Applied Mathematics and Computation, Elsevier, vol. 378(C).
    4. Qinglei Hu & Bing Xiao, 2013. "Adaptive fault tolerant control using integral sliding mode strategy with application to flexible spacecraft," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(12), pages 2273-2286.
    5. Wang, Shengbo & Cao, Yanyi & Huang, Tingwen & Wen, Shiping, 2019. "Passivity and passification of memristive neural networks with leakage term and time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 294-310.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Javaid, Umair & Zhen, Ziyang & Shahid, Sami & Ibrahim, Dauda Sh & Ijaz, Salman, 2024. "Observer-based attitude control of spacecraft under actuator dead zone and misalignment faults," Applied Mathematics and Computation, Elsevier, vol. 465(C).
    2. Zhou, Xingyu & Tian, Yang & Wang, Haoping, 2022. "Neural network state observer-based robust adaptive fault-tolerant quantized iterative learning control for the rigid-flexible coupled robotic systems with unknown time delays," Applied Mathematics and Computation, Elsevier, vol. 430(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Qunxian & Xu, Shengyuan & Zhang, Zhengqiang, 2020. "Nonfragile H∞ observer design for uncertain nonlinear switched systems with quantization," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    2. Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    3. Du, Dongsheng & Cocquempot, Vincent & Jiang, Bin, 2019. "Robust fault estimation observer design for switched systems with unknown input," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 70-83.
    4. Sakthivel, Rathinasamy & Suveetha, V.T. & Nithya, Venkatesh & Sakthivel, Ramalingam, 2020. "Finite-time fault detection filter design for complex systems with multiple stochastic communication and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    5. Wang, Yuxiao & Cao, Yuting & Guo, Zhenyuan & Wen, Shiping, 2020. "Passivity and passification of memristive recurrent neural networks with multi-proportional delays and impulse," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    6. Vimal Kumar, S. & Raja, R. & Marshal Anthoni, S. & Cao, Jinde & Tu, Zhengwen, 2018. "Robust finite-time non-fragile sampled-data control for T-S fuzzy flexible spacecraft model with stochastic actuator faults," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 483-497.
    7. Visakamoorthi, B. & Subramanian, K. & Muthukumar, P., 2022. "Hidden Markov model based non-fragile sampled-data control design for mode-dependent fuzzy systems with actuator faults," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    8. Zhang, Liang & Feng, Zhiguang & Jiang, Zhengyi & Zhao, Ning & Yang, Yang, 2020. "Improved results on reachable set estimation of singular systems," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    9. Suriguga, & Kao, Yonggui & Shao, Chuntao & Chen, Xiangyong, 2021. "Stability of high-order delayed Markovian jumping reaction-diffusion HNNs with uncertain transition rates," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    10. Liu, Lijun & Chen, Mou & Li, Tao, 2022. "Disturbance observer-based robust coordination control for unmanned autonomous helicopter slung-load system via coupling analysis method," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    11. Ngoc Phi Nguyen & Sung Kyung Hong, 2018. "Fault-Tolerant Control of Quadcopter UAVs Using Robust Adaptive Sliding Mode Approach," Energies, MDPI, vol. 12(1), pages 1-15, December.
    12. Visakamoorthi, B. & Muthukumar, P., 2022. "Fuzzy sampled-data control for single-master multi-slave teleoperation systems with stochastic actuator faults," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 375-387.
    13. Kumar, S. Vimal & Anthoni, S. Marshal & Raja, R., 2019. "Dissipative analysis for aircraft flight control systems with randomly occurring uncertainties via non-fragile sampled-data control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 217-226.
    14. Wen-jing Niu & Zhong-kai Feng & Shuai Liu & Yu-bin Chen & Yin-shan Xu & Jun Zhang, 2021. "Multiple Hydropower Reservoirs Operation by Hyperbolic Grey Wolf Optimizer Based on Elitism Selection and Adaptive Mutation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 573-591, January.
    15. Li, Jiahao & Liu, Yu & Yu, Jinyong & Sun, Yiming & Liu, Mengmeng, 2021. "A new result of terminal sliding mode finite-time state and fault estimation for a class of descriptor switched systems," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    16. Li, Zanhua & Chen, Xiangyong & Ding, Shihong & Liu, Yang & Qiu, Jianlong, 2020. "TCP/AWM network congestion algorithm with funnel control and arbitrary setting time," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    17. Yan, Yan & Wu, Libing & Yan, Weijun & Hu, Yuhan & Zhao, Nannan & Chen, Ming, 2022. "Finite-time event-triggered fault-tolerant control for a family of pure-feedback systems," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    18. Zamart, Chantapish & Botmart, Thongchai & Weera, Wajaree & Charoensin, Suphachai, 2022. "New delay-dependent conditions for finite-time extended dissipativity based non-fragile feedback control for neural networks with mixed interval time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 684-713.
    19. Liu, Fan & Chen, Mou & Li, Tao, 2022. "Resilient H∞ control for uncertain turbofan linear switched systems with hybrid switching mechanism and disturbance observer," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    20. Miaadi, Foued & Li, Xiaodi, 2021. "Impulsive effect on fixed-time control for distributed delay uncertain static neural networks with leakage delay," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:409:y:2021:i:c:s0096300321005087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.