IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v321y2018icp483-497.html
   My bibliography  Save this article

Robust finite-time non-fragile sampled-data control for T-S fuzzy flexible spacecraft model with stochastic actuator faults

Author

Listed:
  • Vimal Kumar, S.
  • Raja, R.
  • Marshal Anthoni, S.
  • Cao, Jinde
  • Tu, Zhengwen

Abstract

In this paper, the problem of robust finite-time non-fragile sampled-data control is investigated for uncertain flexible spacecraft model with stochastic actuator faults based on Takagi-Sugeno (T-S) fuzzy model approach. Specifically, the existence of stochastic actuator faults are described by using the Bernoulli distribution. On the basis of the input-delay approach, the sampled-data system is reformulated to a continuous time-varying delay system. Further, based on Lyapunov functional approach and linear matrix inequality technique, sufficient conditions are derived for the existence of the desired state feedback controller ensuring the stochastic finite-time bounded with prescribed H∞ performance index. Finally, numerical simulations are provided for the practical flexible spacecraft control system to verify the effectiveness and applicability of the proposed control design.

Suggested Citation

  • Vimal Kumar, S. & Raja, R. & Marshal Anthoni, S. & Cao, Jinde & Tu, Zhengwen, 2018. "Robust finite-time non-fragile sampled-data control for T-S fuzzy flexible spacecraft model with stochastic actuator faults," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 483-497.
  • Handle: RePEc:eee:apmaco:v:321:y:2018:i:c:p:483-497
    DOI: 10.1016/j.amc.2017.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317307749
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rajavel, S. & Samidurai, R. & Cao, Jinde & Alsaedi, Ahmed & Ahmad, Bashir, 2017. "Finite-time non-fragile passivity control for neural networks with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 297(C), pages 145-158.
    2. Zhou, Jianping & Park, Ju H. & Ma, Qian, 2016. "Non-fragile observer-based H∞ control for stochastic time-delay systems," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 69-83.
    3. Qinglei Hu & Bing Xiao, 2013. "Adaptive fault tolerant control using integral sliding mode strategy with application to flexible spacecraft," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(12), pages 2273-2286.
    4. Chen Zheng & Jinde Cao & Manfeng Hu & Xiaozheng Fan, 2017. "Finite-time stabilisation for discrete-time T–S fuzzy model system with channel fading and two types of parametric uncertainty," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(1), pages 34-42, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Javaid, Umair & Zhen, Ziyang & Shahid, Sami & Ibrahim, Dauda Sh & Ijaz, Salman, 2024. "Observer-based attitude control of spacecraft under actuator dead zone and misalignment faults," Applied Mathematics and Computation, Elsevier, vol. 465(C).
    2. Jiao Xu & Tao Song & Jiaxin Wang, 2024. "Finite-Time Fuzzy Fault-Tolerant Control for Nonlinear Flexible Spacecraft System with Stochastic Actuator Faults," Mathematics, MDPI, vol. 12(4), pages 1-25, February.
    3. Cao, Yang & Sriraman, R. & Samidurai, R., 2020. "Stability and stabilization analysis of nonlinear time-delay systems with randomly occurring controller gain fluctuation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 36-51.
    4. Wang, Yao & Guo, Jun & Liu, Guobao & Lu, Junwei & Li, Fangyuan, 2021. "Finite-time sampled-data synchronization for uncertain neutral-type semi-Markovian jump neural networks with mixed time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    5. Xu, Xiaofeng & Chen, Mou & Li, Tao & Wu, Qingxian, 2021. "Composite fault tolerant attitude control for flexible satellite system under disturbance and input delay," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    6. Miaadi, Foued & Li, Xiaodi, 2021. "Impulse-dependent settling-time for finite time stabilization of uncertain impulsive static neural networks with leakage delay and distributed delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 259-276.
    7. Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    8. Zamart, Chantapish & Botmart, Thongchai & Weera, Wajaree & Charoensin, Suphachai, 2022. "New delay-dependent conditions for finite-time extended dissipativity based non-fragile feedback control for neural networks with mixed interval time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 684-713.
    9. Visakamoorthi, B. & Muthukumar, P., 2022. "Fuzzy sampled-data control for single-master multi-slave teleoperation systems with stochastic actuator faults," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 375-387.
    10. Kumar, S. Vimal & Anthoni, S. Marshal & Raja, R., 2019. "Dissipative analysis for aircraft flight control systems with randomly occurring uncertainties via non-fragile sampled-data control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 217-226.
    11. Miaadi, Foued & Li, Xiaodi, 2021. "Impulsive effect on fixed-time control for distributed delay uncertain static neural networks with leakage delay," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    12. Visakamoorthi, B. & Subramanian, K. & Muthukumar, P., 2022. "Hidden Markov model based non-fragile sampled-data control design for mode-dependent fuzzy systems with actuator faults," Applied Mathematics and Computation, Elsevier, vol. 435(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sakthivel, R. & Joby, Maya & Wang, Chao & Kaviarasan, B., 2018. "Finite-time fault-tolerant control of neutral systems against actuator saturation and nonlinear actuator faults," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 425-436.
    2. Luo, Jinnan & Tian, Wenhong & Zhong, Shouming & Shi, Kaibo & Chen, Hao & Gu, Xian-Ming & Wang, Wenqin, 2017. "Non-fragile asynchronous H∞ control for uncertain stochastic memory systems with Bernoulli distribution," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 109-128.
    3. Zhiguo Yan & Zhiwei Zhang & Guolin Hu & Baolong Zhu, 2022. "Observer-Based Finite-Time H ∞ Control of the Blood Gases System in Extracorporeal Circulation via the T-S Fuzzy Model," Mathematics, MDPI, vol. 10(12), pages 1-15, June.
    4. Zhou, Yu & Pan, Yingnan & Li, Shubo & Liang, Hongjing, 2020. "Event-triggered cooperative containment control for a class of uncertain non-identical networks," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    5. Zhou, Jianping & Sang, Chengyan & Li, Xiao & Fang, Muyun & Wang, Zhen, 2018. "H∞ consensus for nonlinear stochastic multi-agent systems with time delay," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 41-58.
    6. Harshavarthini, S. & Sakthivel, R. & Ma, Yong-Ki & Muslim, M., 2020. "Finite-time resilient fault-tolerant investment policy scheme for chaotic nonlinear finance system," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    7. Wu, Kai-Ning & Sun, Han-Xiao & Yang, Baoqing & Lim, Cheng-Chew, 2018. "Finite-time boundary control for delay reaction–diffusion systems," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 52-63.
    8. Ngoc Phi Nguyen & Sung Kyung Hong, 2018. "Fault-Tolerant Control of Quadcopter UAVs Using Robust Adaptive Sliding Mode Approach," Energies, MDPI, vol. 12(1), pages 1-15, December.
    9. Kumar, S. Vimal & Anthoni, S. Marshal & Raja, R., 2019. "Dissipative analysis for aircraft flight control systems with randomly occurring uncertainties via non-fragile sampled-data control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 217-226.
    10. Samidurai, R. & Sriraman, R., 2019. "Robust dissipativity analysis for uncertain neural networks with additive time-varying delays and general activation functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 201-216.
    11. Xu, Xiaofeng & Chen, Mou & Li, Tao & Wu, Qingxian, 2021. "Composite fault tolerant attitude control for flexible satellite system under disturbance and input delay," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    12. Xiong, Jun & Chang, Xiao-Heng & Yi, Xiaojian, 2018. "Design of robust nonfragile fault detection filter for uncertain dynamic systems with quantization," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 774-788.
    13. Zamart, Chantapish & Botmart, Thongchai & Weera, Wajaree & Charoensin, Suphachai, 2022. "New delay-dependent conditions for finite-time extended dissipativity based non-fragile feedback control for neural networks with mixed interval time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 684-713.
    14. Yu, Peng & Ma, Yuechao, 2020. "Observer-based asynchronous control for Markov jump systems," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    15. Li, Lingchun & Shen, Mouquan & Zhang, Guangming & Yan, Shen, 2017. "H∞ control of Markov jump systems with time-varying delay and incomplete transition probabilities," Applied Mathematics and Computation, Elsevier, vol. 301(C), pages 95-106.
    16. Kaviarasan, Boomipalagan & Kwon, Oh-Min & Park, Myeong Jin & Sakthivel, Rathinasamy, 2021. "Stochastic faulty estimator-based non-fragile tracking controller for multi-agent systems with communication delay," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    17. Che, Haochi & Huang, Jun & Zhao, Xudong & Ma, Xiang & Xu, Ning, 2020. "Functional interval observer for discrete-time systems with disturbances," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    18. Li, Min & Shu, Feng & Liu, Duyu & Zhong, Shouming, 2018. "Robust H∞ control of T-S fuzzy systems with input time-varying delays: A delay partitioning method," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 209-222.
    19. Cao, Yang & Samidurai, R. & Sriraman, R., 2019. "Robust passivity analysis for uncertain neural networks with leakage delay and additive time-varying delays by using general activation function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 57-77.
    20. Zhiyao Ma & Yongming Li & Shaocheng Tong, 2017. "Observer-based fuzzy adaptive fault control for a class of MIMO nonlinear systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(6), pages 1331-1346, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:321:y:2018:i:c:p:483-497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.