IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v44y2013i12p2273-2286.html
   My bibliography  Save this article

Adaptive fault tolerant control using integral sliding mode strategy with application to flexible spacecraft

Author

Listed:
  • Qinglei Hu
  • Bing Xiao

Abstract

Adaptive-based integral sliding mode control scheme is developed to solve the actuator fault-tolerant compensation problem for linear time-invariant system in the presence of unknown actuator faults and external disturbances. A nonlinear integral-type sliding manifold is first presented that incorporates a virtual nominal control to achieve prescribed specifications of the perturbed system, and an adaptive sliding mode controller is constructed to automatically compensate for external disturbances and unknown time-invariant faults. It is shown that the proposed controller has the capability to guarantee that the resulting closed-loop system is asymptotically stable. Control design methodology is then extended to tackle with the unknown time-varying actuator faults. It is proved that any given level of gain attenuation from external disturbance/parametric estimation error to system output is achieved with the developed control law. The closed-loop performance of the new control solution derived here is evaluated extensively through numerical simulations in which the flexible spacecraft attitude control under both the external disturbances and actuator faults are considered.

Suggested Citation

  • Qinglei Hu & Bing Xiao, 2013. "Adaptive fault tolerant control using integral sliding mode strategy with application to flexible spacecraft," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(12), pages 2273-2286.
  • Handle: RePEc:taf:tsysxx:v:44:y:2013:i:12:p:2273-2286
    DOI: 10.1080/00207721.2012.702236
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2012.702236
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2012.702236?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Xiaofeng & Chen, Mou & Li, Tao & Wu, Qingxian, 2021. "Composite fault tolerant attitude control for flexible satellite system under disturbance and input delay," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    2. Zhiyao Ma & Yongming Li & Shaocheng Tong, 2017. "Observer-based fuzzy adaptive fault control for a class of MIMO nonlinear systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(6), pages 1331-1346, April.
    3. Vimal Kumar, S. & Raja, R. & Marshal Anthoni, S. & Cao, Jinde & Tu, Zhengwen, 2018. "Robust finite-time non-fragile sampled-data control for T-S fuzzy flexible spacecraft model with stochastic actuator faults," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 483-497.
    4. Ngoc Phi Nguyen & Sung Kyung Hong, 2019. "Fault Diagnosis and Fault-Tolerant Control Scheme for Quadcopter UAVs with a Total Loss of Actuator," Energies, MDPI, vol. 12(6), pages 1-22, March.
    5. Ngoc Phi Nguyen & Sung Kyung Hong, 2018. "Fault-Tolerant Control of Quadcopter UAVs Using Robust Adaptive Sliding Mode Approach," Energies, MDPI, vol. 12(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:44:y:2013:i:12:p:2273-2286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.