IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v385y2020ics0096300320303635.html
   My bibliography  Save this article

A nonsingular M-matrix-based global exponential stability analysis of higher-order delayed discrete-time Cohen–Grossberg neural networks

Author

Listed:
  • Dong, Zeyu
  • Wang, Xin
  • Zhang, Xian

Abstract

This paper focuses on the problem of global exponential stability analysis for high-order delayed discrete-time Cohen–Grossberg neural networks. Multiple time-varying delays are considered. First, a technique lemma is obtained based on the properties of nonsingular M-matrices. Second, the delay-dependent and -independent criteria under which the zero equilibrium is globally exponentially stable are derived, respectively. Last, the validity of these criteria are illustrated by a pair of numerical examples. Compared with the previous results, the merits of the proposed method are: (i) no Lyapunov–Krasovskii functional or auxiliary function is required; (ii) less computational complexity is verified; and (iii) the obtained stability criteria can easily be realized, since they are to test whether a matrix is nonsingular M-matrix.

Suggested Citation

  • Dong, Zeyu & Wang, Xin & Zhang, Xian, 2020. "A nonsingular M-matrix-based global exponential stability analysis of higher-order delayed discrete-time Cohen–Grossberg neural networks," Applied Mathematics and Computation, Elsevier, vol. 385(C).
  • Handle: RePEc:eee:apmaco:v:385:y:2020:i:c:s0096300320303635
    DOI: 10.1016/j.amc.2020.125401
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320303635
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125401?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zidong & Fang, Jian’an & Liu, Xiaohui, 2008. "Global stability of stochastic high-order neural networks with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 388-396.
    2. Zhang, Chuan-Ke & He, Yong & Jiang, Lin & Lin, Wen-Juan & Wu, Min, 2017. "Delay-dependent stability analysis of neural networks with time-varying delay: A generalized free-weighting-matrix approach," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 102-120.
    3. Li, Zhi-Min & Chang, Xiao-Heng & Yu, Lu, 2016. "Robust quantized H∞ filtering for discrete-time uncertain systems with packet dropouts," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 361-371.
    4. Wang, Yudong & Xia, Jianwei & Wang, Zhen & Shen, Hao, 2020. "Design of a fault-tolerant output-feedback controller for thickness control in cold rolling mills," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    5. Dai, Mingcheng & Huang, Zhengguo & Xia, Jianwei & Meng, Bo & Wang, Jian & Shen, Hao, 2019. "Non-fragile extended dissipativity-based state feedback control for 2-D Markov jump delayed systems," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    6. Xiong, Jun & Chang, Xiao-Heng & Yi, Xiaojian, 2018. "Design of robust nonfragile fault detection filter for uncertain dynamic systems with quantization," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 774-788.
    7. Gao, Zhen-Man & He, Yong & Wu, Min, 2019. "Improved stability criteria for the neural networks with time-varying delay via new augmented Lyapunov–Krasovskii functional," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 258-269.
    8. Shi, Kaibo & Wang, Jun & Zhong, Shouming & Zhang, Xiaojun & Liu, Yajuan & Cheng, Jun, 2019. "New reliable nonuniform sampling control for uncertain chaotic neural networks under Markov switching topologies," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 169-193.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Liu & Ma, Weijun & Wang, Xin, 2024. "Lagrange stability and passivity in the mean square sense of discrete-time stochastic Markovian switched neural networks with time-varying mixed delays," Applied Mathematics and Computation, Elsevier, vol. 477(C).
    2. Meng, Xianhe & Zhang, Xian & Wang, Yantao, 2023. "Bounded real lemmas and exponential H∞ control for memristor-based neural networks with unbounded time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 66-81.
    3. Sun, Yuting & Hu, Cheng & Yu, Juan & Shi, Tingting, 2023. "Synchronization of fractional-order reaction-diffusion neural networks via mixed boundary control," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    4. Qi, Yiwen & Qu, Ziyu & Yao, Zhaohui & Zhao, Xiujuan & Tang, Yiwen, 2023. "Event-Triggered iterative learning control for asynchronously switched systems," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    5. Wang, Junlan & Wang, Xin & Wang, Yantao & Zhang, Xian, 2021. "Non-reduced order method to global h-stability criteria for proportional delay high-order inertial neural networks," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    6. Hua, Wentao & Wang, Yantao & Liu, Chunyan, 2024. "New method for global exponential synchronization of multi-link memristive neural networks with three kinds of time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 471(C).
    7. Zheng, Wei & Zhang, Zhiming & Lam, Hak-Keung & Sun, Fuchun & Wen, Shuhuan, 2023. "LMIs-based exponential stabilization for interval delay systems via congruence transformation: Application in chaotic Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    8. Chen, Yonghui & Xue, Yu & Yang, Xiaona & Zhang, Xian, 2023. "A direct analysis method to Lagrangian global exponential stability for quaternion memristive neural networks with mixed delays," Applied Mathematics and Computation, Elsevier, vol. 439(C).
    9. Yao, Dajie & Dou, Chunxia & Xie, Xiangpeng & Hu, Songlin, 2022. "Containment control of non-affine multi-agent systems based on given precision," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    10. Xie, Lifei & Cheng, Jun & Wang, Hailing & Wang, Jiange & Hu, Mengjie & Zhou, Zhidong, 2022. "Memory-based event-triggered asynchronous control for semi-Markov switching systems," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    11. Chen, Yonghui & Zhang, Xian & Xue, Yu, 2022. "Global exponential synchronization of high-order quaternion Hopfield neural networks with unbounded distributed delays and time-varying discrete delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 173-189.
    12. Zhang, Zhongjie & Yu, Tingting & Zhang, Xian, 2022. "Algebra criteria for global exponential stability of multiple time-varying delay Cohen–Grossberg neural networks," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    13. Yu, Peilin & Deng, Feiqi, 2022. "Stabilization analysis of Markovian asynchronous switched systems with input delay and Lévy noise," Applied Mathematics and Computation, Elsevier, vol. 422(C).
    14. Yang, Ni & Gao, Ruiyi & Su, Huan, 2022. "Stability of multi-links complex-valued impulsive stochastic systems with Markovian switching and multiple delays," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sakthivel, Rathinasamy & Suveetha, V.T. & Nithya, Venkatesh & Sakthivel, Ramalingam, 2020. "Finite-time fault detection filter design for complex systems with multiple stochastic communication and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    2. Zhang, Zhiming & Zheng, Wei & Lam, H.K. & Wen, Shuhuan & Sun, Fuchun & Xie, Ping, 2020. "Stability analysis and output feedback control for stochastic networked systems with multiple communication delays and nonlinearities using fuzzy control technique," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    3. Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    4. Xia, Yude & Wang, Jing & Meng, Bo & Chen, Xiangyong, 2020. "Further results on fuzzy sampled-data stabilization of chaotic nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 379(C).
    5. Ju, Yanhao & Sun, Yuangong & Meng, Fanwei, 2020. "Stabilization of switched positive system with impulse and marginally stable subsystems: A mode-dependent dwell time method," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    6. Li, Xiaoqing & Nguang, Sing Kiong & She, Kun & Cheng, Jun & Zhong, Shouming, 2021. "Resilient controller synthesis for Markovian jump systems with probabilistic faults and gain fluctuations under stochastic sampling operational mechanism," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    7. Chen, Jun & Park, Ju H., 2020. "New versions of Bessel–Legendre inequality and their applications to systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    8. Liu, Xinmiao & Xia, Jianwei & Huang, Xia & Shen, Hao, 2020. "Generalized synchronization for coupled Markovian neural networks subject to randomly occurring parameter uncertainties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    9. Wang, Xuelian & Xia, Jianwei & Wang, Jing & Wang, Zhen & Wang, Jian, 2020. "Reachable set estimation for Markov jump LPV systems with time delays," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    10. Wang, Jinling & Liang, Jinling & Zhang, Cheng-Tang & Fan, Dongmei, 2021. "Event-triggered non-fragile control for uncertain positive Roesser model with PDT switching mechanism," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    11. Du, Dongsheng & Cocquempot, Vincent & Jiang, Bin, 2019. "Robust fault estimation observer design for switched systems with unknown input," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 70-83.
    12. Cai, Xiao & Zhong, Shouming & Wang, Jun & Shi, Kaibo, 2020. "Robust H∞ control for uncertain delayed T-S fuzzy systems with stochastic packet dropouts," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    13. Nakamori, Seiichi, 2018. "Least-squares finite impulse response fixed-lag smoother and filter in linear discrete-time stochastic systems," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 94-106.
    14. Hamdi, Issam El & Vargas, Alessandro N. & Bouzahir, Hassane & Oliveira, Ricardo C.L.F. & Acho, Leonardo, 2021. "Robust stability of stochastic systems with varying delays: Application to RLC circuit with intermittent closed-loop," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    15. Min, Huifang & Xu, Shengyuan & Yu, Xin & Fei, Shumin & Cui, Guozeng, 2020. "Adaptive Tracking Control for Stochastic Nonlinear Systems with Full-State Constraints and Unknown Covariance Noise," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    16. Kwon, O.M. & Lee, S.H. & Park, M.J. & Lee, S.M., 2020. "Augmented zero equality approach to stability for linear systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 381(C).
    17. Lee, Tae H. & Park, Myeong Jin & Park, Ju H., 2021. "An improved stability criterion of neural networks with time-varying delays in the form of quadratic function using novel geometry-based conditions," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    18. Yang, Yi & Chen, Fei & Lang, Jiahong & Chen, Xiangyong & Wang, Jing, 2021. "Sliding mode control of persistent dwell-time switched systems with random data dropouts," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    19. Chang, Xiao-Heng & Li, Zhi-Min & Xiong, Jun & Wang, Yi-Ming, 2017. "LMI approaches to input and output quantized feedback stabilization of linear systems," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 162-175.
    20. Chen, Yonghui & Zhang, Xian & Xue, Yu, 2022. "Global exponential synchronization of high-order quaternion Hopfield neural networks with unbounded distributed delays and time-varying discrete delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 173-189.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:385:y:2020:i:c:s0096300320303635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.