IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v426y2022ics0096300322001710.html
   My bibliography  Save this article

Finite-time event-triggered fault-tolerant control for a family of pure-feedback systems

Author

Listed:
  • Yan, Yan
  • Wu, Libing
  • Yan, Weijun
  • Hu, Yuhan
  • Zhao, Nannan
  • Chen, Ming

Abstract

This article focuses on the event-triggered fault-tolerant control (ETFTC) for a family of nonlinear pure-feedback systems (PFSs) is investigated. Firstly, the differential mean-value theorem (MVT) is applicable to deal with the nonaffine function in systems and the control input signals were successfully decoupled. Then, by using backstepping technique and the fuzzy logic systems (FLSs), a novel finite-time ETFTC scheme is effectively rendered. Furthermore, the newly designed fault-tolerant controller compensates for actuator faults, the trigger mechanism improves the transmission efficiency of the input signals, and the ETFTC scheme guarantees that all closed-loop signals are bounded. Comparative simulation results further validate the effectiveness of the given control method.

Suggested Citation

  • Yan, Yan & Wu, Libing & Yan, Weijun & Hu, Yuhan & Zhao, Nannan & Chen, Ming, 2022. "Finite-time event-triggered fault-tolerant control for a family of pure-feedback systems," Applied Mathematics and Computation, Elsevier, vol. 426(C).
  • Handle: RePEc:eee:apmaco:v:426:y:2022:i:c:s0096300322001710
    DOI: 10.1016/j.amc.2022.127087
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322001710
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin-Zi Yang & Yuan-Xin Li, 2020. "Fuzzy adaptive asymptotic tracking of uncertain nonlinear systems with full states constraints," International Journal of Systems Science, Taylor & Francis Journals, vol. 51(16), pages 3550-3562, December.
    2. Wu, Li-Bing & Park, Ju H. & Xie, Xiang-Peng & Liu, Ya-Juan & Yang, Zhi-Chun, 2020. "Event-triggered adaptive asymptotic tracking control of uncertain nonlinear systems with unknown dead-zone constraints," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    3. Jun Song & Yugang Niu & Tinggang Jia, 2016. "Input–output finite-time stabilisation of nonlinear stochastic system with missing measurements," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(12), pages 2985-2995, September.
    4. Xu, Ning & Zhao, Xudong & Zong, Guangdeng & Wang, Yuanqing, 2021. "Adaptive control design for uncertain switched nonstrict-feedback nonlinear systems to achieve asymptotic tracking performance," Applied Mathematics and Computation, Elsevier, vol. 408(C).
    5. Meng, Xin & Zhai, Ding & Fu, Zhumu & Xie, Xiangpeng, 2020. "Adaptive fault tolerant control for a class of switched nonlinear systems with unknown control directions," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    6. Xiong, Jun & Chang, Xiao-Heng & Yi, Xiaojian, 2018. "Design of robust nonfragile fault detection filter for uncertain dynamic systems with quantization," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 774-788.
    7. Yu-Han Hu & Ling Zhao & Li-Bing Wu & Nan-Nan Zhao & Yu-Jun Zhang, 2020. "Adaptive event-triggered fuzzy tracking control of nonlinear systems with dead-zones and unmeasurable states," International Journal of Systems Science, Taylor & Francis Journals, vol. 51(16), pages 3251-3268, December.
    8. Feifei Wang & Diyi Chen & Xinguang Zhang & Yonghong Wu, 2017. "Finite-time stability of a class of nonlinear fractional-order system with the discrete time delay," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(5), pages 984-993, April.
    9. Xin-Nan Zhang & Xiao-Jian Li, 2020. "Adaptive fault-tolerant control for a class of stochastic nonlinear systems with multiple sensor faults," International Journal of Systems Science, Taylor & Francis Journals, vol. 51(12), pages 2217-2237, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Yifan & Liu, Wenhui, 2023. "Adaptive fuzzy dynamic surface control for nonstrict-feedback nonlinear state constrained systems with input dead-zone via event-triggered sampling," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    2. Wang, Le & Sun, Wei & Su, Shun-Feng, 2022. "Adaptive asymptotic tracking control for nonlinear systems with state constraints and input saturation," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    3. Yoo, Sung Jin, 2021. "Decentralized event-triggered adaptive control of a class of uncertain interconnected nonlinear systems using local state feedback corrupted by unknown injection data," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    4. Yuan, Manman & Zhai, Junyong & Ye, Hui, 2022. "Adaptive output feedback control for a class of switched stochastic nonlinear systems via an event-triggered strategy," Applied Mathematics and Computation, Elsevier, vol. 422(C).
    5. Ju, Xinxu & Jia, Xianglei & Shi, Xiaocheng & Yu, Shan’en, 2022. "Adaptive output feedback event-triggered tracking control for nonlinear systems with unknown control coefficient," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    6. Cui, Di & Zou, Wencheng & Guo, Jian & Xiang, Zhengrong, 2022. "Neural network-based adaptive finite-time tracking control of switched nonlinear systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    7. Yao, Hejun & Gao, Fangzheng & Huang, Jiacai & Wu, Yuqiang, 2021. "Global prescribed-time stabilization via time-scale transformation for switched nonlinear systems subject to switching rational powers," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    8. Du, Dongsheng & Cocquempot, Vincent & Jiang, Bin, 2019. "Robust fault estimation observer design for switched systems with unknown input," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 70-83.
    9. Sakthivel, Rathinasamy & Suveetha, V.T. & Nithya, Venkatesh & Sakthivel, Ramalingam, 2020. "Finite-time fault detection filter design for complex systems with multiple stochastic communication and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    10. Sun, Meng & Zhuang, Guangming & Xia, Jianwei & Wang, Yanqian & Chen, Guoliang, 2022. "Stochastic admissibility and H∞ output feedback control for singular Markov jump systems under dynamic measurement output event-triggered strategy," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    11. Liu, Shanlin & Niu, Ben & Zong, Guangdeng & Zhao, Xudong & Xu, Ning, 2022. "Adaptive fixed-time hierarchical sliding mode control for switched under-actuated systems with dead-zone constraints via event-triggered strategy," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    12. Li, Jing & Zhu, Quanxin, 2023. "Event-triggered impulsive control of stochastic functional differential systems," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    13. Wang, Jiaqi & Fang, Fang & Yi, Xiaojian & Liu, Yajuan, 2021. "Dynamic event-triggered fault estimation and sliding mode fault-tolerant control for networked control systems with sensor faults," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    14. Han, Jian & Liu, Xiuhua & Wei, Xinjiang & Zhang, Huifeng & Hu, Xin, 2021. "Adjustable dimension descriptor observer based fault estimation of nonlinear system with unknown input," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    15. Xue, Huanbin & Xu, Xiaohui & Zhang, Jiye & Yang, Xiaopeng, 2019. "Robust stability of impulsive switched neural networks with multiple time delays," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 456-475.
    16. Joby, Maya & Santra, Srimanta & Anthoni, S. Marshal, 2021. "Finite-time contractive boundedness of extracorporeal blood circulation process," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    17. Dong, Zeyu & Wang, Xin & Zhang, Xian, 2020. "A nonsingular M-matrix-based global exponential stability analysis of higher-order delayed discrete-time Cohen–Grossberg neural networks," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    18. Ravi P. Agarwal & Snezhana Hristova & Donal O’Regan & Ricardo Almeida, 2021. "Approximate Iterative Method for Initial Value Problem of Impulsive Fractional Differential Equations with Generalized Proportional Fractional Derivatives," Mathematics, MDPI, vol. 9(16), pages 1-16, August.
    19. Wang, Junlan & Wang, Xin & Wang, Yantao & Zhang, Xian, 2021. "Non-reduced order method to global h-stability criteria for proportional delay high-order inertial neural networks," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    20. Ju, Yanhao & Sun, Yuangong & Meng, Fanwei, 2020. "Stabilization of switched positive system with impulse and marginally stable subsystems: A mode-dependent dwell time method," Applied Mathematics and Computation, Elsevier, vol. 383(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:426:y:2022:i:c:s0096300322001710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.