IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v181y2021icp316-332.html
   My bibliography  Save this article

Dynamics of a stochastic Markovian switching predator–prey model with infinite memory and general Lévy jumps

Author

Listed:
  • Lu, Chun

Abstract

This paper investigates a stochastic Markovian switching predator–prey model with infinite memory and general Lévy jumps. Firstly, we transfer a classic infinite memory predator–prey model with weak kernel case into an equivalent model through integral transform. Then, for the corresponding stochastic Markovian switching model, we establish the sufficient conditions for permanence in time average and the threshold between stability in time average and extinction. Finally, sufficient criteria for a unique ergodic stationary distribution of the model are derived. Our results show that, firstly, both white noise and infinite memory are unfavorable to the existence of the stationary distribution; secondly, the general Lévy jumps could make the stationary distribution vanish as well as happen; finally, the Markovian switching could make the stationary distribution appear.

Suggested Citation

  • Lu, Chun, 2021. "Dynamics of a stochastic Markovian switching predator–prey model with infinite memory and general Lévy jumps," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 316-332.
  • Handle: RePEc:eee:matcom:v:181:y:2021:i:c:p:316-332
    DOI: 10.1016/j.matcom.2020.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475420303414
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2020.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Qun & Jiang, Daqing, 2019. "Dynamical behavior of a stochastic multigroup SIR epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    2. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2018. "Asymptotic behavior of a food-limited Lotka–Volterra mutualism model with Markovian switching and Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 94-104.
    3. Sun, Xinguo & Zuo, Wenjie & Jiang, Daqing & Hayat, Tasawar, 2018. "Unique stationary distribution and ergodicity of a stochastic Logistic model with distributed delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 864-881.
    4. Lu, Chun & Ding, Xiaohua, 2019. "Periodic solutions and stationary distribution for a stochastic predator-prey system with impulsive perturbations," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 313-322.
    5. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2018. "Stationary distribution and extinction of a stochastic predator–prey model with additional food and nonlinear perturbation," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 226-239.
    6. Lu, Chun & Ding, Xiaohua, 2019. "Dynamical behavior of stochastic delay Lotka–Volterra competitive model with general Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    7. Liu, Meng & Bai, Chuanzhi, 2020. "Optimal harvesting of a stochastic mutualism model with regime-switching," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    8. Zuo, Wenjie & Jiang, Daqing & Sun, Xinguo & Hayat, Tasawar & Alsaedi, Ahmed, 2018. "Long-time behaviors of a stochastic cooperative Lotka–Volterra system with distributed delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 542-559.
    9. Li, Dagen & Liu, Meng, 2020. "Invariant measure of a stochastic food-limited population model with regime switching," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 16-26.
    10. Mao, Xuerong & Marion, Glenn & Renshaw, Eric, 2002. "Environmental Brownian noise suppresses explosions in population dynamics," Stochastic Processes and their Applications, Elsevier, vol. 97(1), pages 95-110, January.
    11. Bao, Jianhai & Wang, Feng-Yu & Yuan, Chenggui, 2019. "Asymptotic Log-Harnack inequality and applications for stochastic systems of infinite memory," Stochastic Processes and their Applications, Elsevier, vol. 129(11), pages 4576-4596.
    12. He, Sha & Tang, Sanyi & Wang, Weiming, 2019. "A stochastic SIS model driven by random diffusion of air pollutants," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 532(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xingzhi & Tian, Baodan & Xu, Xin & Zhang, Hailan & Li, Dong, 2023. "A stochastic predator–prey system with modified LG-Holling type II functional response," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 449-485.
    2. Lu, Chun & Liu, Honghui & Zhang, De, 2021. "Dynamics and simulations of a second order stochastically perturbed SEIQV epidemic model with saturated incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Rajchakit, G. & Sriraman, R. & Vignesh, P. & Lim, C.P., 2021. "Impulsive effects on Clifford-valued neural networks with time-varying delays: An asymptotic stability analysis," Applied Mathematics and Computation, Elsevier, vol. 407(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Chun & Liu, Honghui & Zhang, De, 2021. "Dynamics and simulations of a second order stochastically perturbed SEIQV epidemic model with saturated incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Zhao, Xin & Zeng, Zhijun, 2020. "Stationary distribution and extinction of a stochastic ratio-dependent predator–prey system with stage structure for the predator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    3. Wenxu Ning & Zhijun Liu & Lianwen Wang & Ronghua Tan, 2021. "Analysis of a Stochastic Competitive Model with Saturation Effect and Distributed Delay," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1435-1459, December.
    4. Lu, Chun, 2022. "Dynamical analysis and numerical simulations on a crowley-Martin predator-prey model in stochastic environment," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    5. Cao, Nan & Fu, Xianlong, 2023. "Stationary distribution and extinction of a Lotka–Volterra model with distribute delay and nonlinear stochastic perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    6. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    7. Zhou, Baoquan & Jiang, Daqing & Han, Bingtao & Hayat, Tasawar, 2022. "Threshold dynamics and density function of a stochastic epidemic model with media coverage and mean-reverting Ornstein–Uhlenbeck process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 15-44.
    8. Rajchakit, G. & Sriraman, R. & Vignesh, P. & Lim, C.P., 2021. "Impulsive effects on Clifford-valued neural networks with time-varying delays: An asymptotic stability analysis," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    9. Han, Bingtao & Jiang, Daqing, 2022. "Stationary distribution, extinction and density function of a stochastic prey-predator system with general anti-predator behavior and fear effect," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    10. Zhao, Xin & Zeng, Zhijun, 2020. "Stationary distribution of a stochastic predator–prey system with stage structure for prey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    11. Li, Qiuyue & Cong, Fuzhong & Liu, Tianbao & Zhou, Yaoming, 2020. "Stationary distribution of a stochastic HIV model with two infective stages," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    12. Wang, Zhaojuan & Deng, Meiling & Liu, Meng, 2021. "Stationary distribution of a stochastic ratio-dependent predator-prey system with regime-switching," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    13. Lu, Minmin & Wang, Yan & Jiang, Daqing, 2021. "Stationary distribution and probability density function analysis of a stochastic HIV model with cell-to-cell infection," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    14. Chinnadurai, M. & Fatini, Mohamed El & Rathinasamy, A., 2023. "Stochastic perturbation to 2-LTR dynamical model in HIV infected patients," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 473-497.
    15. Han, Bingtao & Zhou, Baoquan & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Stationary solution, extinction and density function for a high-dimensional stochastic SEI epidemic model with general distributed delay," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    16. Tong, Jinying & Zhang, Zhenzhong & Bao, Jianhai, 2013. "The stationary distribution of the facultative population model with a degenerate noise," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 655-664.
    17. Huang, Zaitang & Cao, Junfei, 2018. "Ergodicity and bifurcations for stochastic logistic equation with non-Gaussian Lévy noise," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 1-10.
    18. Shi, Zhenfeng & Zhang, Xinhong & Jiang, Daqing, 2019. "Dynamics of an avian influenza model with half-saturated incidence," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 399-416.
    19. Liu, Meng & Wang, Ke, 2009. "Survival analysis of stochastic single-species population models in polluted environments," Ecological Modelling, Elsevier, vol. 220(9), pages 1347-1357.
    20. Qi, Kai & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Virus dynamic behavior of a stochastic HIV/AIDS infection model including two kinds of target cell infections and CTL immune responses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 548-570.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:181:y:2021:i:c:p:316-332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.