IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v343y2019icp342-353.html
   My bibliography  Save this article

Stability analysis of quaternion-valued neural networks with both discrete and distributed delays

Author

Listed:
  • Tu, Zhengwen
  • Zhao, Yongxiang
  • Ding, Nan
  • Feng, Yuming
  • Zhang, Wei

Abstract

The existence, uniqueness and stability of the equilibrium of quaternion-valued neural networks (QVNNs) with both discrete and distributed delays are investigated in this paper. The considered model is managed as a single entirety without decomposition. Based on homeomorphic mapping theorem and linear matrix inequality, several sufficient criteria are derived to ascertain the aforementioned QVNNs to be globally asymptotically stable and exponentially stable. Moreover, provided criteria can be verified by the linear matrix inequality (LMI) toolbox in MATLAB. Finally, one simulation example is demonstrated to verify the effectiveness of obtained results.

Suggested Citation

  • Tu, Zhengwen & Zhao, Yongxiang & Ding, Nan & Feng, Yuming & Zhang, Wei, 2019. "Stability analysis of quaternion-valued neural networks with both discrete and distributed delays," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 342-353.
  • Handle: RePEc:eee:apmaco:v:343:y:2019:i:c:p:342-353
    DOI: 10.1016/j.amc.2018.09.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318308282
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.09.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Chengdai & Cao, Jinde & Xiao, Min & Alsaedi, Ahmed & Hayat, Tasawar, 2017. "Bifurcations in a delayed fractional complex-valued neural network," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 210-227.
    2. Zhang, Ruimei & Zeng, Deqiang & Zhong, Shouming & Yu, Yongbin, 2017. "Event-triggered sampling control for stability and stabilization of memristive neural networks with communication delays," Applied Mathematics and Computation, Elsevier, vol. 310(C), pages 57-74.
    3. Li, Ruoxia & Cao, Jinde & Alsaedi, Ahmad & Alsaadi, Fuad, 2017. "Exponential and fixed-time synchronization of Cohen–Grossberg neural networks with time-varying delays and reaction-diffusion terms," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 37-51.
    4. Bao, Haibo & Park, Ju H. & Cao, Jinde, 2015. "Matrix measure strategies for exponential synchronization and anti-synchronization of memristor-based neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 543-556.
    5. Chen, Chuan & Li, Lixiang & Peng, Haipeng & Yang, Yixian, 2018. "Adaptive synchronization of memristor-based BAM neural networks with mixed delays," Applied Mathematics and Computation, Elsevier, vol. 322(C), pages 100-110.
    6. Zhang, Lei & Song, Qiankun & Zhao, Zhenjiang, 2017. "Stability analysis of fractional-order complex-valued neural networks with both leakage and discrete delays," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 296-309.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Hong-Li & Zhang, Long & Hu, Cheng & Jiang, Haijun & Cao, Jinde, 2020. "Global Mittag-Leffler synchronization of fractional-order delayed quaternion-valued neural networks: Direct quaternion approach," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    2. Zhao, Rui & Wang, Baoxian & Jian, Jigui, 2022. "Global μ-stabilization of quaternion-valued inertial BAM neural networks with time-varying delays via time-delayed impulsive control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 223-245.
    3. Rajchakit, G. & Sriraman, R. & Lim, C.P. & Unyong, B., 2022. "Existence, uniqueness and global stability of Clifford-valued neutral-type neural networks with time delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 508-527.
    4. Zhang, Zhengqiu & Yang, Zhen, 2023. "Asymptotic stability for quaternion-valued fuzzy BAM neural networks via integral inequality approach," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    5. Usa Humphries & Grienggrai Rajchakit & Pramet Kaewmesri & Pharunyou Chanthorn & Ramalingam Sriraman & Rajendran Samidurai & Chee Peng Lim, 2020. "Global Stability Analysis of Fractional-Order Quaternion-Valued Bidirectional Associative Memory Neural Networks," Mathematics, MDPI, vol. 8(5), pages 1-27, May.
    6. Zhang, Weiwei & Sha, Chunlin & Cao, Jinde & Wang, Guanglan & Wang, Yuan, 2021. "Adaptive quaternion projective synchronization of fractional order delayed neural networks in quaternion field," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    7. Baluni, Sapna & Sehgal, Ishani & Yadav, Vijay K. & Das, Subir, 2024. "Exponential synchronization of a class of quaternion-valued neural network with time-varying delays: A Matrix Measure Approach," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    8. Shu, Jinlong & Wu, Baowei & Xiong, Lianglin & Wu, Tao & Zhang, Haiyang, 2021. "Stochastic stabilization of Markov jump quaternion-valued neural network using sampled-data control," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    9. Xue, Huanbin & Xu, Xiaohui & Zhang, Jiye & Yang, Xiaopeng, 2019. "Robust stability of impulsive switched neural networks with multiple time delays," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 456-475.
    10. Pahnehkolaei, Seyed Mehdi Abedi & Alfi, Alireza & Machado, J.A. Tenreiro, 2019. "Delay independent robust stability analysis of delayed fractional quaternion-valued leaky integrator echo state neural networks with QUAD condition," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 278-293.
    11. Tu, Zhengwen & Yang, Xinsong & Wang, Liangwei & Ding, Nan, 2019. "Stability and stabilization of quaternion-valued neural networks with uncertain time-delayed impulses: Direct quaternion method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    12. Wang, Huamin & Wei, Guoliang & Wen, Shiping & Huang, Tingwen, 2021. "Impulsive disturbance on stability analysis of delayed quaternion-valued neural networks," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    13. Pan, Jie & Pan, Zhaoya, 2021. "Novel robust stability criteria for uncertain parameter quaternionic neural networks with mixed delays: Whole quaternionic method," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    14. Qingchao Meng & Huamin Wang, 2023. "Impulsive Destabilization Effect on Novel Existence of Solution and Global μ -Stability for MNNs in Quaternion Field," Mathematics, MDPI, vol. 11(8), pages 1-12, April.
    15. Usa Humphries & Grienggrai Rajchakit & Pramet Kaewmesri & Pharunyou Chanthorn & Ramalingam Sriraman & Rajendran Samidurai & Chee Peng Lim, 2020. "Stochastic Memristive Quaternion-Valued Neural Networks with Time Delays: An Analysis on Mean Square Exponential Input-to-State Stability," Mathematics, MDPI, vol. 8(5), pages 1-26, May.
    16. Grienggrai Rajchakit & Pharunyou Chanthorn & Pramet Kaewmesri & Ramalingam Sriraman & Chee Peng Lim, 2020. "Global Mittag–Leffler Stability and Stabilization Analysis of Fractional-Order Quaternion-Valued Memristive Neural Networks," Mathematics, MDPI, vol. 8(3), pages 1-29, March.
    17. Rajchakit, G. & Sriraman, R. & Vignesh, P. & Lim, C.P., 2021. "Impulsive effects on Clifford-valued neural networks with time-varying delays: An asymptotic stability analysis," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    18. Grienggrai Rajchakit & Ramalingam Sriraman & Chee Peng Lim & Panu Sam-ang & Porpattama Hammachukiattikul, 2021. "Synchronization in Finite-Time Analysis of Clifford-Valued Neural Networks with Finite-Time Distributed Delays," Mathematics, MDPI, vol. 9(11), pages 1-18, May.
    19. Li, Hong-Li & Kao, Yonggui & Hu, Cheng & Jiang, Haijun & Jiang, Yao-Lin, 2021. "Robust exponential stability of fractional-order coupled quaternion-valued neural networks with parametric uncertainties and impulsive effects," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    20. Li, Donghua & Zhang, Zhengqiu & Zhang, Xiaoluan, 2020. "Periodic solutions of discrete-time Quaternion-valued BAM neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    21. Jie Pan & Lianglin Xiong, 2021. "Novel Criteria of Stability for Delayed Memristive Quaternionic Neural Networks: Directly Quaternionic Method," Mathematics, MDPI, vol. 9(11), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pahnehkolaei, Seyed Mehdi Abedi & Alfi, Alireza & Machado, J.A. Tenreiro, 2019. "Delay independent robust stability analysis of delayed fractional quaternion-valued leaky integrator echo state neural networks with QUAD condition," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 278-293.
    2. Tu, Zhengwen & Ding, Nan & Li, Liangliang & Feng, Yuming & Zou, Limin & Zhang, Wei, 2017. "Adaptive synchronization of memristive neural networks with time-varying delays and reaction–diffusion term," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 118-128.
    3. Zeng, Deqiang & Zhang, Ruimei & Liu, Yajuan & Zhong, Shouming, 2017. "Sampled-data synchronization of chaotic Lur’e systems via input-delay-dependent-free-matrix zero equality approach," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 34-46.
    4. Yuan, Jun & Zhao, Lingzhi & Huang, Chengdai & Xiao, Min, 2019. "Novel results on bifurcation for a fractional-order complex-valued neural network with leakage delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 868-883.
    5. Jinman He & Fangqi Chen & Qinsheng Bi, 2019. "Quasi-Matrix and Quasi-Inverse-Matrix Projective Synchronization for Delayed and Disturbed Fractional Order Neural Network," Complexity, Hindawi, vol. 2019, pages 1-15, April.
    6. Zhang, Weiwei & Zhang, Hai & Cao, Jinde & Zhang, Hongmei & Chen, Dingyuan, 2020. "Synchronization of delayed fractional-order complex-valued neural networks with leakage delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    7. Li, Qiaoping & Liu, Sanyang & Chen, Yonggang, 2018. "Combination event-triggered adaptive networked synchronization communication for nonlinear uncertain fractional-order chaotic systems," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 521-535.
    8. Shi, Yanchao & Cao, Jinde & Chen, Guanrong, 2017. "Exponential stability of complex-valued memristor-based neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 222-234.
    9. Xu, Quan & Xu, Xiaohui & Zhuang, Shengxian & Xiao, Jixue & Song, Chunhua & Che, Chang, 2018. "New complex projective synchronization strategies for drive-response networks with fractional complex-variable dynamics," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 552-566.
    10. Yang, Xujun & Li, Chuandong & Huang, Tingwen & Song, Qiankun & Huang, Junjian, 2018. "Synchronization of fractional-order memristor-based complex-valued neural networks with uncertain parameters and time delays," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 105-123.
    11. Qi, Xingnan & Bao, Haibo & Cao, Jinde, 2019. "Exponential input-to-state stability of quaternion-valued neural networks with time delay," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 382-393.
    12. Pratap, A. & Raja, R. & Cao, J. & Lim, C.P. & Bagdasar, O., 2019. "Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 241-260.
    13. Wang, Xinhe & Lu, Junwei & Wang, Zhen & Li, Yuxia, 2020. "Dynamics of discrete epidemic models on heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    14. Huang, Chengdai & Cao, Jinde & Xiao, Min & Alsaedi, Ahmed & Hayat, Tasawar, 2017. "Bifurcations in a delayed fractional complex-valued neural network," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 210-227.
    15. Qin, Xiaoli & Wang, Cong & Li, Lixiang & Peng, Haipeng & Yang, Yixian & Ye, Lu, 2018. "Finite-time modified projective synchronization of memristor-based neural network with multi-links and leakage delay," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 302-315.
    16. Hong, Yaxian & Bin, Honghua & Huang, Zhenkun, 2019. "Synchronization of state-switching hopfield-type neural networks: A quantized level set approach," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 16-24.
    17. Chen, Weixin & Xu, Xinzhong & Zhang, Qimin, 2024. "Hopf bifurcation and fixed-time stability of a reaction–diffusion echinococcosis model with mixed delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 1-19.
    18. Liu, Yunfeng & Song, Zhiqiang & Tan, Manchun, 2019. "Multiple μ-stability and multiperiodicity of delayed memristor-based fuzzy cellular neural networks with nonmonotonic activation functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 1-17.
    19. Wang, Lingyu & Huang, Tingwen & Xiao, Qiang, 2018. "Global exponential synchronization of nonautonomous recurrent neural networks with time delays on time scales," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 263-275.
    20. Su, Haipeng & Luo, Runzi & Huang, Meichun & Fu, Jiaojiao, 2022. "Practical fixed time active control scheme for synchronization of a class of chaotic neural systems with external disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:343:y:2019:i:c:p:342-353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.