IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v139y2020ics0960077920304367.html
   My bibliography  Save this article

A mathematical study on the spread of COVID-19 considering social distancing and rapid assessment: The case of Jakarta, Indonesia

Author

Listed:
  • Aldila, Dipo
  • Khoshnaw, Sarbaz H.A.
  • Safitri, Egi
  • Anwar, Yusril Rais
  • Bakry, Aanisah R.Q.
  • Samiadji, Brenda M.
  • Anugerah, Demas A.
  • GH, M. Farhan Alfarizi
  • Ayulani, Indri D.
  • Salim, Sheryl N.

Abstract

The aim of this study is to investigate the effects of rapid testing and social distancing in controlling the spread of COVID-19, particularly in the city of Jakarta, Indonesia. We formulate a modified susceptible exposed infectious recovered compartmental model considering asymptomatic individuals. Rapid testing is intended to trace the existence of asymptomatic infected individuals among the population. This asymptomatic class is categorized into two subclasses: detected and undetected asymptomatic individuals. Furthermore, the model considers the limitations of medical resources to treat an infected individual in a hospital. The model shows two types of equilibrium point: COVID-19 free and COVID-19 endemic. The COVID-19-free equilibrium point is locally and asymptotically stable if the basic reproduction number (R0)is less than unity. In contrast, COVID-19-endemic equilibrium always exists when R0>1. The model can also show a backward bifurcation at R0=1whenever the treatment saturation parameter, which describes the hospital capacity, is larger than a specific threshold. To justify the model parameters, we use the incidence data from the city of Jakarta, Indonesia. The data pertain to infected individuals who self-isolate in their homes and visit the hospital for further treatment. Our numerical experiments indicate that strict social distancing has the potential to succeed in reducing and delaying the time of an outbreak. However, if the strict social distancing policy is relaxed, a massive rapid-test intervention should be conducted to avoid a large-scale outbreak in the future.

Suggested Citation

  • Aldila, Dipo & Khoshnaw, Sarbaz H.A. & Safitri, Egi & Anwar, Yusril Rais & Bakry, Aanisah R.Q. & Samiadji, Brenda M. & Anugerah, Demas A. & GH, M. Farhan Alfarizi & Ayulani, Indri D. & Salim, Sheryl N, 2020. "A mathematical study on the spread of COVID-19 considering social distancing and rapid assessment: The case of Jakarta, Indonesia," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304367
    DOI: 10.1016/j.chaos.2020.110042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920304367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ndaïrou, Faïçal & Area, Iván & Nieto, Juan J. & Torres, Delfim F.M., 2020. "Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    2. Mandal, Manotosh & Jana, Soovoojeet & Nandi, Swapan Kumar & Khatua, Anupam & Adak, Sayani & Kar, T.K., 2020. "A model based study on the dynamics of COVID-19: Prediction and control," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    3. Chakraborty, Tanujit & Ghosh, Indrajit, 2020. "Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Ge & Li, Zhiming & Din, Anwarud & Chen, Tao, 2024. "Dynamic analysis and optimal control of a stochastic COVID-19 model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 498-517.
    2. Usama H. Issa & Ashraf Balabel & Mohammed Abdelhakeem & Medhat M. A. Osman, 2021. "Developing a Risk Model for Assessment and Control of the Spread of COVID-19," Risks, MDPI, vol. 9(2), pages 1-15, February.
    3. Md Arif Billah & Md Mamun Miah & Md Nuruzzaman Khan, 2020. "Reproductive number of coronavirus: A systematic review and meta-analysis based on global level evidence," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-17, November.
    4. Nur Hannani Bi Rahman & Shazmin Shareena A. Azis & Ibrahim Sipan, 2021. "COVID-19: Standard Operating Procedure Improvement For Green Office Building Using Indoor Environmental Quality," LARES lares-2021-4dqg, Latin American Real Estate Society (LARES).
    5. Sara K Al-Harbi & Salma M Al-Tuwairqi, 2022. "Modeling the effect of lockdown and social distancing on the spread of COVID-19 in Saudi Arabia," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-40, April.
    6. Nadim, Sk Shahid & Ghosh, Indrajit & Chattopadhyay, Joydev, 2021. "Short-term predictions and prevention strategies for COVID-19: A model-based study," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    7. Yang, Chao & Wan, Zhiyang & Yuan, Quan & Zhou, Yang & Sun, Maopeng, 2023. "Travel before, during and after the COVID-19 pandemic: Exploring factors in essential travel using empirical data," Journal of Transport Geography, Elsevier, vol. 110(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sinitsyn, E. V. & Tolmachev, A. V. & Ovchinnikov, A. S., 2020. "Socio-economic factors in the spread of SARS-COV-2 across Russian regions," R-Economy, Ural Federal University, Graduate School of Economics and Management, vol. 6(3), pages 129-145.
    2. Pelinovsky, Efim & Kurkin, Andrey & Kurkina, Oxana & Kokoulina, Maria & Epifanova, Anastasia, 2020. "Logistic equation and COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. da Silva, Ramon Gomes & Ribeiro, Matheus Henrique Dal Molin & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2020. "Forecasting Brazilian and American COVID-19 cases based on artificial intelligence coupled with climatic exogenous variables," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Mandal, Manotosh & Jana, Soovoojeet & Nandi, Swapan Kumar & Khatua, Anupam & Adak, Sayani & Kar, T.K., 2020. "A model based study on the dynamics of COVID-19: Prediction and control," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    5. Kumar Das, Dhiraj & Khatua, Anupam & Kar, T.K. & Jana, Soovoojeet, 2021. "The effectiveness of contact tracing in mitigating COVID-19 outbreak: A model-based analysis in the context of India," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    6. Paul, James Nicodemus & Mbalawata, Isambi Sailon & Mirau, Silas Steven & Masandawa, Lemjini, 2023. "Mathematical modeling of vaccination as a control measure of stress to fight COVID-19 infections," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    7. Matouk, A.E., 2020. "Complex dynamics in susceptible-infected models for COVID-19 with multi-drug resistance," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Boukanjime, Brahim & Caraballo, Tomás & El Fatini, Mohamed & El Khalifi, Mohamed, 2020. "Dynamics of a stochastic coronavirus (COVID-19) epidemic model with Markovian switching," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    9. Crokidakis, Nuno, 2020. "COVID-19 spreading in Rio de Janeiro, Brazil: Do the policies of social isolation really work?," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    10. Memon, Zaibunnisa & Qureshi, Sania & Memon, Bisharat Rasool, 2021. "Assessing the role of quarantine and isolation as control strategies for COVID-19 outbreak: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    11. Rafiq, Danish & Suhail, Suhail Ahmad & Bazaz, Mohammad Abid, 2020. "Evaluation and prediction of COVID-19 in India: A case study of worst hit states," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    12. Li, Tingting & Guo, Youming, 2022. "Optimal control and cost-effectiveness analysis of a new COVID-19 model for Omicron strain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    13. Koutsellis, Themistoklis & Nikas, Alexandros, 2020. "A predictive model and country risk assessment for COVID-19: An application of the Limited Failure Population concept," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    14. Castillo, Oscar & Melin, Patricia, 2021. "A new fuzzy fractal control approach of non-linear dynamic systems: The case of controlling the COVID-19 pandemics," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    15. Păcurar, Cristina-Maria & Necula, Bogdan-Radu, 2020. "An analysis of COVID-19 spread based on fractal interpolation and fractal dimension," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    16. Castillo, Oscar & Melin, Patricia, 2020. "Forecasting of COVID-19 time series for countries in the world based on a hybrid approach combining the fractal dimension and fuzzy logic," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    17. Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    18. Abu Reza Md. Towfiqul Islam & Md. Hasanuzzaman & Md. Abul Kalam Azad & Roquia Salam & Farzana Zannat Toshi & Md. Sanjid Islam Khan & G. M. Monirul Alam & Sobhy M. Ibrahim, 2021. "Effect of meteorological factors on COVID-19 cases in Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 9139-9162, June.
    19. Zahra Dehghan Shabani & Rouhollah Shahnazi, 2020. "Spatial distribution dynamics and prediction of COVID‐19 in Asian countries: spatial Markov chain approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 12(6), pages 1005-1025, December.
    20. Asamoah, Joshua Kiddy K. & Owusu, Mark A. & Jin, Zhen & Oduro, F. T. & Abidemi, Afeez & Gyasi, Esther Opoku, 2020. "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.