IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v400y2021ics0096300321001004.html
   My bibliography  Save this article

Complex dynamics of a tumor-immune system with antigenicity

Author

Listed:
  • Li, Jianquan
  • Xie, Xin
  • Chen, Yuming
  • Zhang, Dian

Abstract

With the effect of antigenicity in consideration, we propose and analyze a conceptual model for the tumor-immune interaction. The model is described by a system of two ordinary differential equations. Though simple, the model can have complicated dynamical behaviors. Besides the tumor-free equilibrium, there can be up to three tumor-present equilibria, which can be a saddle or stable node/focus. Sufficient conditions on the nonexistence of nonconstant periodic solutions are provided. Bifurcation analysis including Hopf bifurcation and Bogdanov–Takens bifurcation is carried out. The theoretical results are supported by numerical simulations. Numerical simulations reveal the complexity of the dynamical behaviors of the model, which includes the subcritical/supercritical Hopf bifurcation, homoclinic bifurcation, saddle-node bifurcation at a nonhyperbolic periodic orbit, the appearance of two limit cycles with a singular closed orbit, and so on. Some biological implications of the theoretical results and numerical simulations are also provided.

Suggested Citation

  • Li, Jianquan & Xie, Xin & Chen, Yuming & Zhang, Dian, 2021. "Complex dynamics of a tumor-immune system with antigenicity," Applied Mathematics and Computation, Elsevier, vol. 400(C).
  • Handle: RePEc:eee:apmaco:v:400:y:2021:i:c:s0096300321001004
    DOI: 10.1016/j.amc.2021.126052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321001004
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong, Yueping & Huang, Gang & Miyazaki, Rinko & Takeuchi, Yasuhiro, 2015. "Dynamics in a tumor immune system with time delays," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 99-113.
    2. Khajanchi, Subhas & Nieto, Juan J., 2019. "Mathematical modeling of tumor-immune competitive system, considering the role of time delay," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 180-205.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Cunjuan & Xiang, Changcheng & Xiang, Zhongyi & Yang, Yi, 2022. "Global dynamics of a Filippov epidemic system with nonlinear thresholds," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xiangdong & Li, Qingze & Pan, Jianxin, 2018. "A deterministic and stochastic model for the system dynamics of tumor–immune responses to chemotherapy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 162-176.
    2. Zhao, Zhong & Pang, Liuyong & Li, Qiuying, 2021. "Analysis of a hybrid impulsive tumor-immune model with immunotherapy and chemotherapy," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    3. Dzyubak, Larysa & Dzyubak, Oleksandr & Awrejcewicz, Jan, 2023. "Nonlinear multiscale diffusion cancer invasion model with memory of states," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    4. Yousefpour, Amin & Jahanshahi, Hadi & Bekiros, Stelios, 2020. "Optimal policies for control of the novel coronavirus disease (COVID-19) outbreak," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    5. Duan, Wei-Long & Lin, Ling, 2021. "Noise and delay enhanced stability in tumor-immune responses to chemotherapy system," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    6. Deng, Shuning & Ji, Jinchen & Wen, Guilin & Xu, Huidong, 2021. "A comparative study of the dynamics of a three-disk dynamo system with and without time delay," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    7. Yi Xie & Ziheng Zhang & Yan Wu & Shuang Li & Liuyong Pang & Yong Li, 2024. "Time-Delay Dynamic Model and Cost-Effectiveness Analysis of Major Emergent Infectious Diseases with Transportation-Related Infection and Entry-Exit Screening," Mathematics, MDPI, vol. 12(13), pages 1-25, July.
    8. Ebraheem Alzahrani & M. M. El-Dessoky & Muhammad Altaf Khan, 2023. "Mathematical Model to Understand the Dynamics of Cancer, Prevention Diagnosis and Therapy," Mathematics, MDPI, vol. 11(9), pages 1-17, April.
    9. Dalal Yahya Alzahrani & Fuaada Mohd Siam & Farah A. Abdullah, 2023. "Elucidating the Effects of Ionizing Radiation on Immune Cell Populations: A Mathematical Modeling Approach with Special Emphasis on Fractional Derivatives," Mathematics, MDPI, vol. 11(7), pages 1-21, April.
    10. Rihan, F.A. & Velmurugan, G., 2020. "Dynamics of fractional-order delay differential model for tumor-immune system," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    11. Sardar, Mrinmoy & Khajanchi, Subhas & Biswas, Santosh & Ghosh, Sumana, 2024. "A mathematical model for tumor-immune competitive system with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    12. Hu, Qing & Hu, Zhixing & Liao, Fucheng, 2016. "Stability and Hopf bifurcation in a HIV-1 infection model with delays and logistic growth," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 128(C), pages 26-41.
    13. Khajanchi, Subhas, 2021. "The impact of immunotherapy on a glioma immune interaction model," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    14. Sardar, Mrinmoy & Biswas, Santosh & Khajanchi, Subhas, 2021. "The impact of distributed time delay in a tumor-immune interaction system," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    15. Han, Haoming & Zhang, Jing & Liu, Yan, 2023. "Stability analysis of hybrid high-order nonlinear multiple time-delayed coupled systems via aperiodically intermittent control," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    16. Dehingia, Kaushik & Das, Parthasakha & Upadhyay, Ranjit Kumar & Misra, Arvind Kumar & Rihan, Fathalla A. & Hosseini, Kamyar, 2023. "Modelling and analysis of delayed tumour–immune system with hunting T-cells," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 669-684.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:400:y:2021:i:c:s0096300321001004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.