IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v386y2020ics0096300320303696.html
   My bibliography  Save this article

First integrals and general solution of the complex Ginzburg-Landau equation

Author

Listed:
  • Kudryashov, Nikolay A.

Abstract

The complex Ginzburg-Landau equation is considered using the traveling wave reduction. The first integral for the system of nonlinear differential equations is found. The first integrals is used to reduce the system of equations to the second-order ordinary differential equation. The general solutions for the five constraints on the parameters of the original complex Ginzburg-Landau equation are given. All these solutions are expressed via the Weierstrass and the Jacobi elliptic functions.

Suggested Citation

  • Kudryashov, Nikolay A., 2020. "First integrals and general solution of the complex Ginzburg-Landau equation," Applied Mathematics and Computation, Elsevier, vol. 386(C).
  • Handle: RePEc:eee:apmaco:v:386:y:2020:i:c:s0096300320303696
    DOI: 10.1016/j.amc.2020.125407
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320303696
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125407?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Djob, Roger Bertin & Kenfact-Jiotsa, Aurelien & Govindarajan, A., 2020. "Non-Lagrangian approach for coupled complex Ginzburg-Landau systems with higher order-dispersion," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    2. Kudryashov, Nikolay A., 2020. "Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    3. Kudryashov, Nikolai A., 2005. "Simplest equation method to look for exact solutions of nonlinear differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 24(5), pages 1217-1231.
    4. Shi, Dongyang & Liu, Qian, 2020. "Superconvergence analysis of a two grid finite element method for Ginzburg–Landau equation," Applied Mathematics and Computation, Elsevier, vol. 365(C).
    5. Kudryashov, Nikolay A., 2019. "Exact solutions of the equation for surface waves in a convecting fluid," Applied Mathematics and Computation, Elsevier, vol. 344, pages 97-106.
    6. Qiu, Yunli & Malomed, Boris A. & Mihalache, Dumitru & Zhu, Xing & Zhang, Li & He, Yingji, 2020. "Soliton dynamics in a fractional complex Ginzburg-Landau model," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kudryashov, Nikolay A. & Kutukov, Aleksandr A. & Biswas, Anjan & Zhou, Qin & Yıldırım, Yakup & Alshomrani, Ali Saleh, 2023. "Optical solitons for the concatenation model: Power-law nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    2. Ahmed H. Arnous & Luminita Moraru, 2022. "Optical Solitons with the Complex Ginzburg–Landau Equation with Kudryashov’s Law of Refractive Index," Mathematics, MDPI, vol. 10(19), pages 1-13, September.
    3. Arnous, Ahmed H. & Biswas, Anjan & Yıldırım, Yakup & Zhou, Qin & Liu, Wenjun & Alshomrani, Ali S. & Alshehri, Hashim M., 2022. "Cubic–quartic optical soliton perturbation with complex Ginzburg–Landau equation by the enhanced Kudryashov’s method," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    4. Zayed, Elsayed M.E. & Alngar, Mohamed E.M. & Biswas, Anjan & Asma, Mir & Ekici, Mehmet & Alzahrani, Abdullah K. & Belic, Milivoj R., 2020. "Optical solitons and conservation laws with generalized Kudryashov’s law of refractive index," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    5. Anjan Biswas & Jose Vega-Guzman & Yakup Yıldırım & Luminita Moraru & Catalina Iticescu & Abdulah A. Alghamdi, 2023. "Optical Solitons for the Concatenation Model with Differential Group Delay: Undetermined Coefficients," Mathematics, MDPI, vol. 11(9), pages 1-14, April.
    6. Xu, Guoan & Zhang, Yi & Li, Jibin, 2022. "Exact solitary wave and periodic-peakon solutions of the complex Ginzburg–Landau equation: Dynamical system approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 157-167.
    7. Kudryashov, Nikolay A., 2020. "Optical solitons of model with integrable equation for wave packet envelope," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Guoan & Zhang, Yi & Li, Jibin, 2022. "Exact solitary wave and periodic-peakon solutions of the complex Ginzburg–Landau equation: Dynamical system approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 157-167.
    2. Nikolay A. Kudryashov, 2021. "Implicit Solitary Waves for One of the Generalized Nonlinear Schrödinger Equations," Mathematics, MDPI, vol. 9(23), pages 1-9, November.
    3. Ekici, Mehmet, 2022. "Kinky breathers, W-shaped and multi-peak soliton interactions for Kudryashov's quintuple power-law coupled with dual form of non-local refractive index structure," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    4. Kudryashov, Nikolay A., 2020. "Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    5. Kudryashov, Nikolay A., 2020. "Optical solitons of model with integrable equation for wave packet envelope," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    6. Kumar, Vikas & Biswas, Anjan & Ekici, Mehmet & Moraru, Luminita & Alzahrani, Abdullah Khamis & Belic, Milivoj R., 2021. "Time–dependent coupled complex short pulse equation: Invariant analysis and complexitons," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    7. Merabti, Abdelouahab & Triki, Houria & Azzouzi, Faiçal & Zhou, Qin & Biswas, Anjan & Liu, Wenjun & Alzahrani, Abdullah Kamis & EL-Akrmi, Abdessetar, 2020. "Propagation properties of chirped optical similaritons with dual-power law nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Kudryashov, Nikolay A. & Kutukov, Aleksandr A. & Biswas, Anjan & Zhou, Qin & Yıldırım, Yakup & Alshomrani, Ali Saleh, 2023. "Optical solitons for the concatenation model: Power-law nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    9. Innocent Simbanefayi & Chaudry Masood Khalique, 2020. "Group Invariant Solutions and Conserved Quantities of a (3+1)-Dimensional Generalized Kadomtsev–Petviashvili Equation," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
    10. Fahmy, E.S., 2008. "Travelling wave solutions for some time-delayed equations through factorizations," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1209-1216.
    11. Raviola, Lisandro A. & De Leo, Mariano F., 2024. "Performance of affine-splitting pseudo-spectral methods for fractional complex Ginzburg-Landau equations," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    12. Li, Pengfei & Malomed, Boris A. & Mihalache, Dumitru, 2020. "Symmetry breaking of spatial Kerr solitons in fractional dimension," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    13. Mustafa Inc & Rubayyi T. Alqahtani & Ravi P. Agarwal, 2023. "W-Shaped Bright Soliton of the (2 + 1)-Dimension Nonlinear Electrical Transmission Line," Mathematics, MDPI, vol. 11(7), pages 1-13, April.
    14. Chaudry Masood Khalique & Karabo Plaatjie, 2021. "Symmetry Methods and Conservation Laws for the Nonlinear Generalized 2D Equal-Width Partial Differential Equation of Engineering," Mathematics, MDPI, vol. 10(1), pages 1-17, December.
    15. Yang, Lijuan & Du, Xianyun & Yang, Qiongfen, 2016. "New variable separation solutions to the (2 + 1)-dimensional Burgers equation," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 1271-1275.
    16. Zayed, E.M.E. & Alurrfi, K.A.E., 2016. "Extended auxiliary equation method and its applications for finding the exact solutions for a class of nonlinear Schrödinger-type equations," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 111-131.
    17. Kengne, Emmanuel, 2021. "Modulational instability and soliton propagation in an alternate right-handed and left-handed multi-coupled nonlinear dissipative transmission network," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    18. Andrei D. Polyanin, 2019. "Comparison of the Effectiveness of Different Methods for Constructing Exact Solutions to Nonlinear PDEs. Generalizations and New Solutions," Mathematics, MDPI, vol. 7(5), pages 1-19, April.
    19. Kudryashov, Nikolay A. & Ryabov, Pavel N., 2014. "Exact solutions of one pattern formation model," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 1090-1093.
    20. Zdravković, S. & Zeković, S. & Bugay, A.N. & Petrović, J., 2021. "Two component model of microtubules and continuum approximation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:386:y:2020:i:c:s0096300320303696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.