IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v344-345y2019ip97-106.html
   My bibliography  Save this article

Exact solutions of the equation for surface waves in a convecting fluid

Author

Listed:
  • Kudryashov, Nikolay A.

Abstract

A method for finding exact solutions and the first integrals is presented. The basic idea of the method is to use the value of the Fuchs index that appears in the Painlevé test to construct the auxiliary equation for finding the first integrals and exact solutions of nonlinear differential equations. It allows us to obtain the first integrals and new exact solutions of some nonlinear ordinary differential equations. The main feature of the method is that we do not assign a solution function at the beginning, we find this function during calculations. This approach is conceptually equivalent to the third step of the Painlevé test and sometimes allows us to change this step. Our approach generalizes a number of other methods for finding exact solutions of nonlinear differential equations. We demonstrate a method for finding the traveling wave solutions and the first integrals of the well-known nonlinear evolution equation for description of surface waves in a convecting liquid. The general solution of this equation at some conditions on parameters and new traveling wave solutions of the fourth-order equation are found.

Suggested Citation

  • Kudryashov, Nikolay A., 2019. "Exact solutions of the equation for surface waves in a convecting fluid," Applied Mathematics and Computation, Elsevier, vol. 344, pages 97-106.
  • Handle: RePEc:eee:apmaco:v:344-345:y:2019:i::p:97-106
    DOI: 10.1016/j.amc.2018.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318308658
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.10.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kudryashov, Nikolai A., 2005. "Simplest equation method to look for exact solutions of nonlinear differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 24(5), pages 1217-1231.
    2. Kudryashov, Nikolai A., 2005. "Fuchs indices and the first integrals of nonlinear differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 26(2), pages 591-603.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kudryashov, Nikolay A. & Kutukov, Aleksandr A. & Biswas, Anjan & Zhou, Qin & Yıldırım, Yakup & Alshomrani, Ali Saleh, 2023. "Optical solitons for the concatenation model: Power-law nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    2. Liu, Hong-Zhun, 2022. "A modification to the first integral method and its applications," Applied Mathematics and Computation, Elsevier, vol. 419(C).
    3. Nikolay A. Kudryashov, 2021. "Implicit Solitary Waves for One of the Generalized Nonlinear Schrödinger Equations," Mathematics, MDPI, vol. 9(23), pages 1-9, November.
    4. Kudryashov, Nikolay A., 2020. "Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    5. Guan, Xue & Liu, Wenjun & Zhou, Qin & Biswas, Anjan, 2020. "Some lump solutions for a generalized (3+1)-dimensional Kadomtsev–Petviashvili equation," Applied Mathematics and Computation, Elsevier, vol. 366(C).
    6. Nikolay A. Kudryashov & Sofia F. Lavrova, 2023. "Painlevé Test, Phase Plane Analysis and Analytical Solutions of the Chavy–Waddy–Kolokolnikov Model for the Description of Bacterial Colonies," Mathematics, MDPI, vol. 11(14), pages 1-17, July.
    7. Kudryashov, Nikolay A., 2019. "Lax pair and first integrals of the traveling wave reduction for the KdV hierarchy," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 323-330.
    8. Kudryashov, Nikolay A., 2020. "First integrals and general solution of the complex Ginzburg-Landau equation," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    9. Kudryashov, Nikolay A., 2020. "Optical solitons of model with integrable equation for wave packet envelope," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kudryashov, Nikolay A. & Zakharchenko, Anastasia S., 2014. "Painlevé analysis and exact solutions for the Belousov–Zhabotinskii reaction–diffusion system," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 111-117.
    2. Eslami, Mostafa, 2016. "Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 141-148.
    3. Kudryashov, N.A., 2015. "On nonlinear differential equation with exact solutions having various pole orders," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 173-177.
    4. Yusuf Pandir & Halime Ulusoy, 2013. "New Generalized Hyperbolic Functions to Find New Exact Solutions of the Nonlinear Partial Differential Equations," Journal of Mathematics, Hindawi, vol. 2013, pages 1-5, January.
    5. Oke Davies Adeyemo & Lijun Zhang & Chaudry Masood Khalique, 2022. "Bifurcation Theory, Lie Group-Invariant Solutions of Subalgebras and Conservation Laws of a Generalized (2+1)-Dimensional BK Equation Type II in Plasma Physics and Fluid Mechanics," Mathematics, MDPI, vol. 10(14), pages 1-46, July.
    6. Kudryashov, Nikolay A., 2019. "Lax pair and first integrals of the traveling wave reduction for the KdV hierarchy," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 323-330.
    7. Innocent Simbanefayi & Chaudry Masood Khalique, 2020. "Group Invariant Solutions and Conserved Quantities of a (3+1)-Dimensional Generalized Kadomtsev–Petviashvili Equation," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
    8. Kudryashov, Nikolay A. & Ivanova, Yulia S., 2016. "Painleve analysis and exact solutions for the modified Korteweg–de Vries equation with polynomial source," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 377-382.
    9. Fahmy, E.S., 2008. "Travelling wave solutions for some time-delayed equations through factorizations," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1209-1216.
    10. Vitanov, Nikolay K. & Dimitrova, Zlatinka I. & Vitanov, Kaloyan N., 2015. "Modified method of simplest equation for obtaining exact analytical solutions of nonlinear partial differential equations: further development of the methodology with applications," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 363-378.
    11. Mustafa Inc & Rubayyi T. Alqahtani & Ravi P. Agarwal, 2023. "W-Shaped Bright Soliton of the (2 + 1)-Dimension Nonlinear Electrical Transmission Line," Mathematics, MDPI, vol. 11(7), pages 1-13, April.
    12. Chaudry Masood Khalique & Karabo Plaatjie, 2021. "Symmetry Methods and Conservation Laws for the Nonlinear Generalized 2D Equal-Width Partial Differential Equation of Engineering," Mathematics, MDPI, vol. 10(1), pages 1-17, December.
    13. Yang, Lijuan & Du, Xianyun & Yang, Qiongfen, 2016. "New variable separation solutions to the (2 + 1)-dimensional Burgers equation," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 1271-1275.
    14. Ramírez, J. & Romero, J.L. & Muriel, C., 2016. "Reductions of PDEs to second order ODEs and symbolic computation," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 122-136.
    15. Kudryashov, N.A. & Lavrova, S.F., 2021. "Dynamical features of the generalized Kuramoto-Sivashinsky equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    16. Zayed, E.M.E. & Alurrfi, K.A.E., 2016. "Extended auxiliary equation method and its applications for finding the exact solutions for a class of nonlinear Schrödinger-type equations," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 111-131.
    17. Andrei D. Polyanin & Alexander V. Aksenov, 2024. "Unsteady Magnetohydrodynamics PDE of Monge–Ampère Type: Symmetries, Closed-Form Solutions, and Reductions," Mathematics, MDPI, vol. 12(13), pages 1-29, July.
    18. Yıldırım, Yakup & Yaşar, Emrullah, 2018. "A (2+1)-dimensional breaking soliton equation: Solutions and conservation laws," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 146-155.
    19. Andrei D. Polyanin, 2019. "Comparison of the Effectiveness of Different Methods for Constructing Exact Solutions to Nonlinear PDEs. Generalizations and New Solutions," Mathematics, MDPI, vol. 7(5), pages 1-19, April.
    20. Xu, Guoan & Zhang, Yi & Li, Jibin, 2022. "Exact solitary wave and periodic-peakon solutions of the complex Ginzburg–Landau equation: Dynamical system approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 157-167.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:344-345:y:2019:i::p:97-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.