IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v131y2020ics0960077919304175.html
   My bibliography  Save this article

Soliton dynamics in a fractional complex Ginzburg-Landau model

Author

Listed:
  • Qiu, Yunli
  • Malomed, Boris A.
  • Mihalache, Dumitru
  • Zhu, Xing
  • Zhang, Li
  • He, Yingji

Abstract

The general objective of the work is to study dynamics of dissipative solitons in the framework of a one-dimensional complex Ginzburg-Landau equation (CGLE) of a fractional order. To estimate the shape of solitons in fractional models, we first develop the variational approximation for solitons of the fractional nonlinear Schrödinger equation (NLSE), and an analytical approximation for exponentially decaying tails of the solitons. Proceeding to numerical consideration of solitons in fractional CGLE, we study, in necessary detail, effects of the respective Lévy index (LI) on the solitons’ dynamics. In particular, dependence of stability domains in the model's parameter space on the LI is identified. Pairs of in-phase dissipative solitons merge into single pulses, with the respective merger distance also determined by LI.

Suggested Citation

  • Qiu, Yunli & Malomed, Boris A. & Mihalache, Dumitru & Zhu, Xing & Zhang, Li & He, Yingji, 2020. "Soliton dynamics in a fractional complex Ginzburg-Landau model," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
  • Handle: RePEc:eee:chsofr:v:131:y:2020:i:c:s0960077919304175
    DOI: 10.1016/j.chaos.2019.109471
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919304175
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.109471?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tarasov, Vasily E. & Zaslavsky, George M., 2005. "Fractional Ginzburg–Landau equation for fractal media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 249-261.
    2. Wan, Youyan & Wang, Zhengping, 2016. "Bound state for fractional Schrödinger equation with saturable nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 735-740.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeng, Liangwei & Mihalache, Dumitru & Malomed, Boris A. & Lu, Xiaowei & Cai, Yi & Zhu, Qifan & Li, Jingzhen, 2021. "Families of fundamental and multipole solitons in a cubic-quintic nonlinear lattice in fractional dimension," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Zeng, Liangwei & Belić, Milivoj R. & Mihalache, Dumitru & Wang, Qing & Chen, Junbo & Shi, Jincheng & Cai, Yi & Lu, Xiaowei & Li, Jingzhen, 2021. "Solitons in spin-orbit-coupled systems with fractional spatial derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Kengne, Emmanuel, 2021. "Modulational instability and soliton propagation in an alternate right-handed and left-handed multi-coupled nonlinear dissipative transmission network," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    4. Zeng, Liangwei & Zeng, Jianhua, 2020. "Fractional quantum couplers," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Ivars, Salim B. & Botey, Muriel & Herrero, Ramon & Staliunas, Kestutis, 2023. "Stabilisation of spatially periodic states by non-Hermitian potentials," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    6. Ekici, Mehmet, 2022. "Kinky breathers, W-shaped and multi-peak soliton interactions for Kudryashov's quintuple power-law coupled with dual form of non-local refractive index structure," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    7. Raviola, Lisandro A. & De Leo, Mariano F., 2024. "Performance of affine-splitting pseudo-spectral methods for fractional complex Ginzburg-Landau equations," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    8. Kumar, Vikas & Biswas, Anjan & Ekici, Mehmet & Moraru, Luminita & Alzahrani, Abdullah Khamis & Belic, Milivoj R., 2021. "Time–dependent coupled complex short pulse equation: Invariant analysis and complexitons," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    9. He, Shangling & Malomed, Boris A. & Mihalache, Dumitru & Peng, Xi & Yu, Xing & He, Yingji & Deng, Dongmei, 2021. "Propagation dynamics of abruptly autofocusing circular Airy Gaussian vortex beams in the fractional Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    10. Merabti, Abdelouahab & Triki, Houria & Azzouzi, Faiçal & Zhou, Qin & Biswas, Anjan & Liu, Wenjun & Alzahrani, Abdullah Kamis & EL-Akrmi, Abdessetar, 2020. "Propagation properties of chirped optical similaritons with dual-power law nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    11. Ekici, Mehmet & Sonmezoglu, Abdullah & Biswas, Anjan, 2021. "Stationary optical solitons with Kudryashov’s laws of refractive index," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    12. Kudryashov, Nikolay A., 2020. "First integrals and general solution of the complex Ginzburg-Landau equation," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    13. Xu, Guoan & Zhang, Yi & Li, Jibin, 2022. "Exact solitary wave and periodic-peakon solutions of the complex Ginzburg–Landau equation: Dynamical system approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 157-167.
    14. Li, Pengfei & Malomed, Boris A. & Mihalache, Dumitru, 2020. "Symmetry breaking of spatial Kerr solitons in fractional dimension," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    15. Zeng, Liangwei & Zhu, Yongle & Malomed, Boris A. & Mihalache, Dumitru & Wang, Qing & Long, Hu & Cai, Yi & Lu, Xiaowei & Li, Jingzhen, 2022. "Quadratic fractional solitons," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    16. Li, Pengfei & Malomed, Boris A. & Mihalache, Dumitru, 2020. "Vortex solitons in fractional nonlinear Schrödinger equation with the cubic-quintic nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Ajou, Ahmad & Abu Arqub, Omar & Al-Smadi, Mohammed, 2015. "A general form of the generalized Taylor’s formula with some applications," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 851-859.
    2. Pavlos, G.P. & Karakatsanis, L.P. & Iliopoulos, A.C. & Pavlos, E.G. & Xenakis, M.N. & Clark, Peter & Duke, Jamie & Monos, D.S., 2015. "Measuring complexity, nonextensivity and chaos in the DNA sequence of the Major Histocompatibility Complex," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 188-209.
    3. Mahmoud A. Zaky & Ahmed S. Hendy & Rob H. De Staelen, 2021. "Alikhanov Legendre—Galerkin Spectral Method for the Coupled Nonlinear Time-Space Fractional Ginzburg–Landau Complex System," Mathematics, MDPI, vol. 9(2), pages 1-22, January.
    4. Heydari, M.H. & Razzaghi, M., 2023. "Piecewise fractional Chebyshev cardinal functions: Application for time fractional Ginzburg–Landau equation with a non-smooth solution," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    5. Hong Lu & Linlin Wang & Mingji Zhang, 2022. "Dynamics of Fractional Stochastic Ginzburg–Landau Equation Driven by Nonlinear Noise," Mathematics, MDPI, vol. 10(23), pages 1-36, November.
    6. Ivars, Salim B. & Botey, Muriel & Herrero, Ramon & Staliunas, Kestutis, 2023. "Stabilisation of spatially periodic states by non-Hermitian potentials," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    7. Korabel, Nickolay & Zaslavsky, George M., 2007. "Transition to chaos in discrete nonlinear Schrödinger equation with long-range interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(2), pages 223-237.
    8. Tarasov, Vasily E. & Zaslavsky, George M., 2007. "Fractional dynamics of systems with long-range space interaction and temporal memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 291-308.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:131:y:2020:i:c:s0960077919304175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.