IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i7p1703-d1114172.html
   My bibliography  Save this article

W-Shaped Bright Soliton of the (2 + 1)-Dimension Nonlinear Electrical Transmission Line

Author

Listed:
  • Mustafa Inc

    (Department of Mathematics, Faculty of Science, Firat University, 23119 Elazig, Turkey
    Department of Medical Research, China Medical University, Taichung 40402, Taiwan)

  • Rubayyi T. Alqahtani

    (Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn, Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia)

  • Ravi P. Agarwal

    (Department of Mathematics, Texas A & M University-Kingsville, 700 University Blvd., Kingsville, TX 78363-8202, USA)

Abstract

In this paper, we investigate solitary wave solutions of the nonlinear electrical transmission line by using the Jacobi elliptic function and the auxiliary equation methods. We obtain Jacobi elliptic function solutions as well as kink, bright, dark, and W-shaped solitons as a result. For specific values of the Jacobi elliptic modulus, we depict bright, dark, and W-shaped soliton solutions as suitable parameters of the structure. Using the auxiliary equation method gives the combined bright–bright and dark–dark optical solitons in optical fibers. One result emerges from this analysis: the potential parameters and free parameters of the method can be employed to degenerate W-shaped bright and dark solitons. The acquired results are general and can be used for many applications in nonlinear dynamic systems.

Suggested Citation

  • Mustafa Inc & Rubayyi T. Alqahtani & Ravi P. Agarwal, 2023. "W-Shaped Bright Soliton of the (2 + 1)-Dimension Nonlinear Electrical Transmission Line," Mathematics, MDPI, vol. 11(7), pages 1-13, April.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1703-:d:1114172
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/7/1703/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/7/1703/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kudryashov, Nikolai A., 2005. "Simplest equation method to look for exact solutions of nonlinear differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 24(5), pages 1217-1231.
    2. Djelah, Gabriel & Ndzana, Fabien II & Abdoulkary, Saidou & Mohamadou, Alidou, 2023. "First and second order rogue waves dynamics in a nonlinear electrical transmission line with the next nearest neighbor couplings," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kudryashov, Nikolay A. & Zakharchenko, Anastasia S., 2014. "Painlevé analysis and exact solutions for the Belousov–Zhabotinskii reaction–diffusion system," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 111-117.
    2. Eslami, Mostafa, 2016. "Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 141-148.
    3. Yin, Yu-Hang & Lü, Xing, 2024. "Multi-parallelized PINNs for the inverse problem study of NLS typed equations in optical fiber communications: Discovery on diverse high-order terms and variable coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    4. Kudryashov, N.A., 2015. "On nonlinear differential equation with exact solutions having various pole orders," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 173-177.
    5. Yusuf Pandir & Halime Ulusoy, 2013. "New Generalized Hyperbolic Functions to Find New Exact Solutions of the Nonlinear Partial Differential Equations," Journal of Mathematics, Hindawi, vol. 2013, pages 1-5, January.
    6. Oke Davies Adeyemo & Lijun Zhang & Chaudry Masood Khalique, 2022. "Bifurcation Theory, Lie Group-Invariant Solutions of Subalgebras and Conservation Laws of a Generalized (2+1)-Dimensional BK Equation Type II in Plasma Physics and Fluid Mechanics," Mathematics, MDPI, vol. 10(14), pages 1-46, July.
    7. Innocent Simbanefayi & Chaudry Masood Khalique, 2020. "Group Invariant Solutions and Conserved Quantities of a (3+1)-Dimensional Generalized Kadomtsev–Petviashvili Equation," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
    8. Kudryashov, Nikolay A. & Ivanova, Yulia S., 2016. "Painleve analysis and exact solutions for the modified Korteweg–de Vries equation with polynomial source," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 377-382.
    9. Fahmy, E.S., 2008. "Travelling wave solutions for some time-delayed equations through factorizations," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1209-1216.
    10. Vitanov, Nikolay K. & Dimitrova, Zlatinka I. & Vitanov, Kaloyan N., 2015. "Modified method of simplest equation for obtaining exact analytical solutions of nonlinear partial differential equations: further development of the methodology with applications," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 363-378.
    11. Chaudry Masood Khalique & Karabo Plaatjie, 2021. "Symmetry Methods and Conservation Laws for the Nonlinear Generalized 2D Equal-Width Partial Differential Equation of Engineering," Mathematics, MDPI, vol. 10(1), pages 1-17, December.
    12. Yang, Lijuan & Du, Xianyun & Yang, Qiongfen, 2016. "New variable separation solutions to the (2 + 1)-dimensional Burgers equation," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 1271-1275.
    13. Ramírez, J. & Romero, J.L. & Muriel, C., 2016. "Reductions of PDEs to second order ODEs and symbolic computation," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 122-136.
    14. Kudryashov, N.A. & Lavrova, S.F., 2021. "Dynamical features of the generalized Kuramoto-Sivashinsky equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    15. Zayed, E.M.E. & Alurrfi, K.A.E., 2016. "Extended auxiliary equation method and its applications for finding the exact solutions for a class of nonlinear Schrödinger-type equations," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 111-131.
    16. Kudryashov, Nikolay A., 2019. "Exact solutions of the equation for surface waves in a convecting fluid," Applied Mathematics and Computation, Elsevier, vol. 344, pages 97-106.
    17. Andrei D. Polyanin & Alexander V. Aksenov, 2024. "Unsteady Magnetohydrodynamics PDE of Monge–Ampère Type: Symmetries, Closed-Form Solutions, and Reductions," Mathematics, MDPI, vol. 12(13), pages 1-29, July.
    18. Yıldırım, Yakup & Yaşar, Emrullah, 2018. "A (2+1)-dimensional breaking soliton equation: Solutions and conservation laws," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 146-155.
    19. Andrei D. Polyanin, 2019. "Comparison of the Effectiveness of Different Methods for Constructing Exact Solutions to Nonlinear PDEs. Generalizations and New Solutions," Mathematics, MDPI, vol. 7(5), pages 1-19, April.
    20. Xu, Guoan & Zhang, Yi & Li, Jibin, 2022. "Exact solitary wave and periodic-peakon solutions of the complex Ginzburg–Landau equation: Dynamical system approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 157-167.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1703-:d:1114172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.