IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v132y2020ics0960077920300011.html
   My bibliography  Save this article

Symmetry breaking of spatial Kerr solitons in fractional dimension

Author

Listed:
  • Li, Pengfei
  • Malomed, Boris A.
  • Mihalache, Dumitru

Abstract

We study symmetry breaking of solitons in the framework of a nonlinear fractional Schrödinger equation (NLFSE), characterized by its Lévy index, with cubic nonlinearity and a symmetric double-well potential. Asymmetric, symmetric, and antisymmetric soliton solutions are found, with stable asymmetric soliton solutions emerging from unstable symmetric and antisymmetric ones by way of symmetry-breaking bifurcations. Two different bifurcation scenarios are possible. First, symmetric soliton solutions undergo a symmetry-breaking bifurcation of the pitchfork type, which gives rise to a branch of asymmetric solitons, under the action of the self-focusing nonlinearity. Second, a family of asymmetric solutions branches off from antisymmetric states in the case of self-defocusing nonlinearity through a bifurcation of an inverted-pitchfork type. Systematic numerical analysis demonstrates that increase of the Lévy index leads to shrinkage or expansion of the symmetry-breaking region, depending on parameters of the double-well potential. Stability of the soliton solutions is explored following the variation of the Lévy index, and the results are confirmed by direct numerical simulations.

Suggested Citation

  • Li, Pengfei & Malomed, Boris A. & Mihalache, Dumitru, 2020. "Symmetry breaking of spatial Kerr solitons in fractional dimension," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
  • Handle: RePEc:eee:chsofr:v:132:y:2020:i:c:s0960077920300011
    DOI: 10.1016/j.chaos.2020.109602
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920300011
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109602?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiu, Yunli & Malomed, Boris A. & Mihalache, Dumitru & Zhu, Xing & Zhang, Li & He, Yingji, 2020. "Soliton dynamics in a fractional complex Ginzburg-Landau model," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    2. Mingkai Liu & David A. Powell & Ilya V. Shadrivov & Mikhail Lapine & Yuri S. Kivshar, 2014. "Spontaneous chiral symmetry breaking in metamaterials," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    3. Albuch, Lior & Malomed, Boris A., 2007. "Transitions between symmetric and asymmetric solitons in dual-core systems with cubic–quintic nonlinearity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 74(4), pages 312-322.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeng, Liangwei & Mihalache, Dumitru & Malomed, Boris A. & Lu, Xiaowei & Cai, Yi & Zhu, Qifan & Li, Jingzhen, 2021. "Families of fundamental and multipole solitons in a cubic-quintic nonlinear lattice in fractional dimension," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Zeng, Liangwei & Belić, Milivoj R. & Mihalache, Dumitru & Wang, Qing & Chen, Junbo & Shi, Jincheng & Cai, Yi & Lu, Xiaowei & Li, Jingzhen, 2021. "Solitons in spin-orbit-coupled systems with fractional spatial derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Zeng, Liangwei & Zeng, Jianhua, 2020. "Fractional quantum couplers," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. Su, Weiwei & Deng, Hanying & Dong, Liangwei & Huang, Zhenfen & Huang, Changming, 2020. "Stabilization of fundamental solitons in the nonlinear fractional Schrödinger equation with PT-symmetric nonlinear lattices," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    5. Qiu, Yunli & Malomed, Boris A. & Mihalache, Dumitru & Zhu, Xing & Peng, Xi & He, Yingji, 2020. "Stabilization of single- and multi-peak solitons in the fractional nonlinear Schrödinger equation with a trapping potential," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    6. He, Shangling & Malomed, Boris A. & Mihalache, Dumitru & Peng, Xi & Yu, Xing & He, Yingji & Deng, Dongmei, 2021. "Propagation dynamics of abruptly autofocusing circular Airy Gaussian vortex beams in the fractional Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Merabti, Abdelouahab & Triki, Houria & Azzouzi, Faiçal & Zhou, Qin & Biswas, Anjan & Liu, Wenjun & Alzahrani, Abdullah Kamis & EL-Akrmi, Abdessetar, 2020. "Propagation properties of chirped optical similaritons with dual-power law nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Zeng, Liangwei & Zhu, Yongle & Malomed, Boris A. & Mihalache, Dumitru & Wang, Qing & Long, Hu & Cai, Yi & Lu, Xiaowei & Li, Jingzhen, 2022. "Quadratic fractional solitons," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    9. Li, Pengfei & Malomed, Boris A. & Mihalache, Dumitru, 2020. "Vortex solitons in fractional nonlinear Schrödinger equation with the cubic-quintic nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Vikas & Biswas, Anjan & Ekici, Mehmet & Moraru, Luminita & Alzahrani, Abdullah Khamis & Belic, Milivoj R., 2021. "Time–dependent coupled complex short pulse equation: Invariant analysis and complexitons," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    2. Merabti, Abdelouahab & Triki, Houria & Azzouzi, Faiçal & Zhou, Qin & Biswas, Anjan & Liu, Wenjun & Alzahrani, Abdullah Kamis & EL-Akrmi, Abdessetar, 2020. "Propagation properties of chirped optical similaritons with dual-power law nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Raviola, Lisandro A. & De Leo, Mariano F., 2024. "Performance of affine-splitting pseudo-spectral methods for fractional complex Ginzburg-Landau equations," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    4. Kengne, Emmanuel, 2021. "Modulational instability and soliton propagation in an alternate right-handed and left-handed multi-coupled nonlinear dissipative transmission network," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    5. Zeng, Liangwei & Mihalache, Dumitru & Malomed, Boris A. & Lu, Xiaowei & Cai, Yi & Zhu, Qifan & Li, Jingzhen, 2021. "Families of fundamental and multipole solitons in a cubic-quintic nonlinear lattice in fractional dimension," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    6. He, Shangling & Malomed, Boris A. & Mihalache, Dumitru & Peng, Xi & Yu, Xing & He, Yingji & Deng, Dongmei, 2021. "Propagation dynamics of abruptly autofocusing circular Airy Gaussian vortex beams in the fractional Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Ekici, Mehmet, 2022. "Kinky breathers, W-shaped and multi-peak soliton interactions for Kudryashov's quintuple power-law coupled with dual form of non-local refractive index structure," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    8. Zeng, Liangwei & Zeng, Jianhua, 2020. "Fractional quantum couplers," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    9. Li, Pengfei & Malomed, Boris A. & Mihalache, Dumitru, 2020. "Vortex solitons in fractional nonlinear Schrödinger equation with the cubic-quintic nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    10. Ivars, Salim B. & Botey, Muriel & Herrero, Ramon & Staliunas, Kestutis, 2023. "Stabilisation of spatially periodic states by non-Hermitian potentials," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    11. Xu, Guoan & Zhang, Yi & Li, Jibin, 2022. "Exact solitary wave and periodic-peakon solutions of the complex Ginzburg–Landau equation: Dynamical system approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 157-167.
    12. Ekici, Mehmet & Sonmezoglu, Abdullah & Biswas, Anjan, 2021. "Stationary optical solitons with Kudryashov’s laws of refractive index," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    13. Zeng, Liangwei & Belić, Milivoj R. & Mihalache, Dumitru & Wang, Qing & Chen, Junbo & Shi, Jincheng & Cai, Yi & Lu, Xiaowei & Li, Jingzhen, 2021. "Solitons in spin-orbit-coupled systems with fractional spatial derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    14. Kudryashov, Nikolay A., 2020. "First integrals and general solution of the complex Ginzburg-Landau equation," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    15. Zeng, Liangwei & Zhu, Yongle & Malomed, Boris A. & Mihalache, Dumitru & Wang, Qing & Long, Hu & Cai, Yi & Lu, Xiaowei & Li, Jingzhen, 2022. "Quadratic fractional solitons," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:132:y:2020:i:c:s0960077920300011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.