IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v371y2020ics0096300319309646.html
   My bibliography  Save this article

Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations

Author

Listed:
  • Kudryashov, Nikolay A.

Abstract

Hierarchy of the perturbed nonlinear Schrödinger equations is considered. Nonlinear differential equations of this hierarchy contain higher orders and can be used for description of highly dispersive optical solutions. A new approach for finding solitary wave solutions of high-order nonlinear differential equations is presented. This approach allows us to significantly simplify symbolic calculations. The main idea of the method is that we use expressions of the dependent variable and its derivatives in the differential equation the polynomial form of the solitary wave. We find optical solitons with high dispersion order for nonlinear perturbed Schrodinger equations of the fourth, sixth, eighth, tenth and twelfth orders.

Suggested Citation

  • Kudryashov, Nikolay A., 2020. "Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations," Applied Mathematics and Computation, Elsevier, vol. 371(C).
  • Handle: RePEc:eee:apmaco:v:371:y:2020:i:c:s0096300319309646
    DOI: 10.1016/j.amc.2019.124972
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319309646
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.124972?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kudryashov, Nikolay A., 2019. "Lax pair and first integrals of the traveling wave reduction for the KdV hierarchy," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 323-330.
    2. Kudryashov, Nikolai A., 2005. "Simplest equation method to look for exact solutions of nonlinear differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 24(5), pages 1217-1231.
    3. Kudryashov, Nikolay A., 2019. "Exact solutions of the equation for surface waves in a convecting fluid," Applied Mathematics and Computation, Elsevier, vol. 344, pages 97-106.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elsayed M. E. Zayed & Khaled A. Gepreel & Mahmoud El-Horbaty & Anjan Biswas & Yakup Yıldırım & Hashim M. Alshehri, 2021. "Highly Dispersive Optical Solitons with Complex Ginzburg–Landau Equation Having Six Nonlinear Forms," Mathematics, MDPI, vol. 9(24), pages 1-19, December.
    2. Kudryashov, Nikolay A. & Nifontov, Daniil R., 2023. "Conservation laws and Hamiltonians of the mathematical model with unrestricted dispersion and polynomial nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    3. Ekici, Mehmet, 2022. "Kinky breathers, W-shaped and multi-peak soliton interactions for Kudryashov's quintuple power-law coupled with dual form of non-local refractive index structure," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    4. Nikolay A. Kudryashov, 2022. "Optical Solitons of the Generalized Nonlinear Schrödinger Equation with Kerr Nonlinearity and Dispersion of Unrestricted Order," Mathematics, MDPI, vol. 10(18), pages 1-9, September.
    5. Oswaldo González-Gaxiola & Anjan Biswas & Yakup Yıldırım & Luminita Moraru, 2022. "Highly Dispersive Optical Solitons in Birefringent Fibers with Polynomial Law of Nonlinear Refractive Index by Laplace–Adomian Decomposition," Mathematics, MDPI, vol. 10(9), pages 1-12, May.
    6. Nikolay A. Kudryashov, 2021. "Implicit Solitary Waves for One of the Generalized Nonlinear Schrödinger Equations," Mathematics, MDPI, vol. 9(23), pages 1-9, November.
    7. Kudryashov, Nikolay A., 2020. "First integrals and general solution of the complex Ginzburg-Landau equation," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    8. El-Ganaini, Shoukry & Kumar, Sachin, 2023. "Symbolic computation to construct new soliton solutions and dynamical behaviors of various wave structures for two different extended and generalized nonlinear Schrödinger equations using the new impr," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 28-56.
    9. Xu, Guoan & Zhang, Yi & Li, Jibin, 2022. "Exact solitary wave and periodic-peakon solutions of the complex Ginzburg–Landau equation: Dynamical system approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 157-167.
    10. Kudryashov, Nikolay A., 2020. "Optical solitons of model with integrable equation for wave packet envelope," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    11. Boutabba, Nadia & Rasheed, Zoya & Ali, Hazrat, 2023. "Light drag in a left-handed atomic medium via Cross Kerr-like nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    12. Kudryashov, Nikolay A., 2020. "Highly dispersive optical solitons of equation with various polynomial nonlinearity law," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guan, Xue & Liu, Wenjun & Zhou, Qin & Biswas, Anjan, 2020. "Some lump solutions for a generalized (3+1)-dimensional Kadomtsev–Petviashvili equation," Applied Mathematics and Computation, Elsevier, vol. 366(C).
    2. Kudryashov, Nikolay A., 2020. "Optical solitons of model with integrable equation for wave packet envelope," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    3. Kudryashov, Nikolay A., 2020. "First integrals and general solution of the complex Ginzburg-Landau equation," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    4. Kudryashov, Nikolay A. & Zakharchenko, Anastasia S., 2014. "Painlevé analysis and exact solutions for the Belousov–Zhabotinskii reaction–diffusion system," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 111-117.
    5. Eslami, Mostafa, 2016. "Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 141-148.
    6. Kudryashov, Nikolay A. & Kutukov, Aleksandr A. & Biswas, Anjan & Zhou, Qin & Yıldırım, Yakup & Alshomrani, Ali Saleh, 2023. "Optical solitons for the concatenation model: Power-law nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    7. Kudryashov, N.A., 2015. "On nonlinear differential equation with exact solutions having various pole orders," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 173-177.
    8. Yusuf Pandir & Halime Ulusoy, 2013. "New Generalized Hyperbolic Functions to Find New Exact Solutions of the Nonlinear Partial Differential Equations," Journal of Mathematics, Hindawi, vol. 2013, pages 1-5, January.
    9. Oke Davies Adeyemo & Lijun Zhang & Chaudry Masood Khalique, 2022. "Bifurcation Theory, Lie Group-Invariant Solutions of Subalgebras and Conservation Laws of a Generalized (2+1)-Dimensional BK Equation Type II in Plasma Physics and Fluid Mechanics," Mathematics, MDPI, vol. 10(14), pages 1-46, July.
    10. Kudryashov, Nikolay A., 2019. "Lax pair and first integrals of the traveling wave reduction for the KdV hierarchy," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 323-330.
    11. Innocent Simbanefayi & Chaudry Masood Khalique, 2020. "Group Invariant Solutions and Conserved Quantities of a (3+1)-Dimensional Generalized Kadomtsev–Petviashvili Equation," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
    12. Kudryashov, Nikolay A. & Ivanova, Yulia S., 2016. "Painleve analysis and exact solutions for the modified Korteweg–de Vries equation with polynomial source," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 377-382.
    13. Fahmy, E.S., 2008. "Travelling wave solutions for some time-delayed equations through factorizations," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1209-1216.
    14. Vitanov, Nikolay K. & Dimitrova, Zlatinka I. & Vitanov, Kaloyan N., 2015. "Modified method of simplest equation for obtaining exact analytical solutions of nonlinear partial differential equations: further development of the methodology with applications," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 363-378.
    15. Triki, Houria & Choudhuri, Amitava & Zhou, Qin & Biswas, Anjan & Alshomrani, Ali Saleh, 2020. "Nonautonomous matter wave bright solitons in a quasi-1D Bose-Einstein condensate system with contact repulsion and dipole-dipole attraction," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    16. Mustafa Inc & Rubayyi T. Alqahtani & Ravi P. Agarwal, 2023. "W-Shaped Bright Soliton of the (2 + 1)-Dimension Nonlinear Electrical Transmission Line," Mathematics, MDPI, vol. 11(7), pages 1-13, April.
    17. Chaudry Masood Khalique & Karabo Plaatjie, 2021. "Symmetry Methods and Conservation Laws for the Nonlinear Generalized 2D Equal-Width Partial Differential Equation of Engineering," Mathematics, MDPI, vol. 10(1), pages 1-17, December.
    18. AlQahtani, Salman A. & Alngar, Mohamed E.M. & Shohib, Reham M.A. & Pathak, Pranavkumar, 2023. "Highly dispersive embedded solitons with quadratic χ(2) and cubic χ(3) non-linear susceptibilities having multiplicative white noise via Itô calculus," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    19. Yang, Lijuan & Du, Xianyun & Yang, Qiongfen, 2016. "New variable separation solutions to the (2 + 1)-dimensional Burgers equation," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 1271-1275.
    20. Ramírez, J. & Romero, J.L. & Muriel, C., 2016. "Reductions of PDEs to second order ODEs and symbolic computation," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 122-136.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:371:y:2020:i:c:s0096300319309646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.