IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v139y2020ics0960077920306809.html
   My bibliography  Save this article

Optical solitons and conservation laws with generalized Kudryashov’s law of refractive index

Author

Listed:
  • Zayed, Elsayed M.E.
  • Alngar, Mohamed E.M.
  • Biswas, Anjan
  • Asma, Mir
  • Ekici, Mehmet
  • Alzahrani, Abdullah K.
  • Belic, Milivoj R.

Abstract

This paper addresses the newly proposed generalized Kudryashov’s law of refractive index to obtain dark, bright and singular optical soliton solutions. Two approaches that collectively reveal such soliton solutions are extended generalized Kudryashov’s method and an addendum to Kudryashov’s approach. Finally, the conservation laws are also enumerated.

Suggested Citation

  • Zayed, Elsayed M.E. & Alngar, Mohamed E.M. & Biswas, Anjan & Asma, Mir & Ekici, Mehmet & Alzahrani, Abdullah K. & Belic, Milivoj R., 2020. "Optical solitons and conservation laws with generalized Kudryashov’s law of refractive index," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920306809
    DOI: 10.1016/j.chaos.2020.110284
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920306809
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110284?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kudryashov, Nikolay A., 2020. "First integrals and general solution of the complex Ginzburg-Landau equation," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elsayed M. E. Zayed & Mohamed E. M. Alngar & Reham M. A. Shohib & Anjan Biswas & Yakup Yıldırım & Salam Khan & Luminita Moraru & Simona Moldovanu & Catalina Iticescu, 2022. "Highly Dispersive Optical Solitons in Fiber Bragg Gratings with Kerr Law of Nonlinear Refractive Index," Mathematics, MDPI, vol. 10(16), pages 1-11, August.
    2. Ekici, Mehmet, 2022. "Kinky breathers, W-shaped and multi-peak soliton interactions for Kudryashov's quintuple power-law coupled with dual form of non-local refractive index structure," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    3. Nikolay A. Kudryashov, 2021. "Implicit Solitary Waves for One of the Generalized Nonlinear Schrödinger Equations," Mathematics, MDPI, vol. 9(23), pages 1-9, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anjan Biswas & Jose Vega-Guzman & Yakup Yıldırım & Luminita Moraru & Catalina Iticescu & Abdulah A. Alghamdi, 2023. "Optical Solitons for the Concatenation Model with Differential Group Delay: Undetermined Coefficients," Mathematics, MDPI, vol. 11(9), pages 1-14, April.
    2. Kudryashov, Nikolay A. & Kutukov, Aleksandr A. & Biswas, Anjan & Zhou, Qin & Yıldırım, Yakup & Alshomrani, Ali Saleh, 2023. "Optical solitons for the concatenation model: Power-law nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    3. Arnous, Ahmed H. & Biswas, Anjan & Yıldırım, Yakup & Zhou, Qin & Liu, Wenjun & Alshomrani, Ali S. & Alshehri, Hashim M., 2022. "Cubic–quartic optical soliton perturbation with complex Ginzburg–Landau equation by the enhanced Kudryashov’s method," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    4. Ahmed H. Arnous & Luminita Moraru, 2022. "Optical Solitons with the Complex Ginzburg–Landau Equation with Kudryashov’s Law of Refractive Index," Mathematics, MDPI, vol. 10(19), pages 1-13, September.
    5. Xu, Guoan & Zhang, Yi & Li, Jibin, 2022. "Exact solitary wave and periodic-peakon solutions of the complex Ginzburg–Landau equation: Dynamical system approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 157-167.
    6. Kudryashov, Nikolay A., 2020. "Optical solitons of model with integrable equation for wave packet envelope," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920306809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.