IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i9p2012-d1131263.html
   My bibliography  Save this article

Optical Solitons for the Concatenation Model with Differential Group Delay: Undetermined Coefficients

Author

Listed:
  • Anjan Biswas

    (Department of Mathematics and Physics, Grambling State University, Grambling, LA 71245, USA
    Mathematical Modeling and Applied Computation (MMAC) Research Group, Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
    Department of Applied Mathematics, National Research Nuclear University, 31 Kashirskoe Hwy, Moscow 115409, Russia
    Department of Applied Sciences, Cross-Border Faculty of Humanities, Economics and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Street, 800201 Galati, Romania)

  • Jose Vega-Guzman

    (Department of Mathematics, Lamar University, Beaumont, TX 77710, USA)

  • Yakup Yıldırım

    (Department of Computer Engineering, Biruni University, Istanbul 34010, Turkey)

  • Luminita Moraru

    (Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008 Galati, Romania)

  • Catalina Iticescu

    (Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008 Galati, Romania)

  • Abdulah A. Alghamdi

    (Mathematical Modeling and Applied Computation (MMAC) Research Group, Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

Abstract

In the current study, the concatenation model of birefringent fibers is explored for the first time, and we present optical soliton solutions to the model. The integration algorithm used to achieve this retrieval is the method of undetermined coefficients, which yields a wide range of soliton solutions. The parameter constraints arise naturally during the derivation of the soliton solutions, which are essential for such solitons to exist.

Suggested Citation

  • Anjan Biswas & Jose Vega-Guzman & Yakup Yıldırım & Luminita Moraru & Catalina Iticescu & Abdulah A. Alghamdi, 2023. "Optical Solitons for the Concatenation Model with Differential Group Delay: Undetermined Coefficients," Mathematics, MDPI, vol. 11(9), pages 1-14, April.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2012-:d:1131263
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/9/2012/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/9/2012/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ekici, Mehmet, 2022. "Kinky breathers, W-shaped and multi-peak soliton interactions for Kudryashov's quintuple power-law coupled with dual form of non-local refractive index structure," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    2. Nikolay A. Kudryashov, 2022. "Optical Solitons of the Generalized Nonlinear Schrödinger Equation with Kerr Nonlinearity and Dispersion of Unrestricted Order," Mathematics, MDPI, vol. 10(18), pages 1-9, September.
    3. Triki, Houria & Sun, Yunzhou & Zhou, Qin & Biswas, Anjan & Yıldırım, Yakup & Alshehri, Hashim M., 2022. "Dark solitary pulses and moving fronts in an optical medium with the higher-order dispersive and nonlinear effects," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    4. Yakup Yıldırım & Anjan Biswas & Luminita Moraru & Abdulah A. Alghamdi, 2023. "Quiescent Optical Solitons for the Concatenation Model with Nonlinear Chromatic Dispersion," Mathematics, MDPI, vol. 11(7), pages 1-25, April.
    5. Wang, Haotian & Li, Xin & Zhou, Qin & Liu, Wenjun, 2023. "Dynamics and spectral analysis of optical rogue waves for a coupled nonlinear Schrödinger equation applicable to pulse propagation in isotropic media," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    6. Kudryashov, Nikolay A., 2020. "First integrals and general solution of the complex Ginzburg-Landau equation," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    7. Kudryashov, Nikolay A., 2020. "Optical solitons of model with integrable equation for wave packet envelope," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    8. Kudryashov, Nikolay A., 2020. "Highly dispersive optical solitons of equation with various polynomial nonlinearity law," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kudryashov, Nikolay A. & Kutukov, Aleksandr A. & Biswas, Anjan & Zhou, Qin & Yıldırım, Yakup & Alshomrani, Ali Saleh, 2023. "Optical solitons for the concatenation model: Power-law nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    2. Islam Samir & Ahmed H. Arnous & Yakup Yıldırım & Anjan Biswas & Luminita Moraru & Simona Moldovanu, 2022. "Optical Solitons with Cubic-Quintic-Septic-Nonic Nonlinearities and Quadrupled Power-Law Nonlinearity: An Observation," Mathematics, MDPI, vol. 10(21), pages 1-9, November.
    3. Kudryashov, Nikolay A., 2020. "Optical solitons of model with integrable equation for wave packet envelope," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Nikolay A. Kudryashov, 2023. "Hamiltonians of the Generalized Nonlinear Schrödinger Equations," Mathematics, MDPI, vol. 11(10), pages 1-12, May.
    5. Kumar, Vikas & Biswas, Anjan & Ekici, Mehmet & Moraru, Luminita & Alzahrani, Abdullah Khamis & Belic, Milivoj R., 2021. "Time–dependent coupled complex short pulse equation: Invariant analysis and complexitons," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    6. Cui, Xiao-Qi & Wen, Xiao-Yong & Li, Zai-Dong, 2024. "Magnetization reversal phenomenon of higher-order lump and mixed interaction structures on periodic background in the (2+1)-dimensional Heisenberg ferromagnet spin equation," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    7. Rami Ahmad El-Nabulsi & Waranont Anukool, 2023. "A generalized nonlinear cubic-quartic Schrodinger equation and its implications in quantum wire," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(5), pages 1-8, May.
    8. Oswaldo González-Gaxiola & Anjan Biswas & Yakup Yıldırım & Luminita Moraru, 2022. "Highly Dispersive Optical Solitons in Birefringent Fibers with Polynomial Law of Nonlinear Refractive Index by Laplace–Adomian Decomposition," Mathematics, MDPI, vol. 10(9), pages 1-12, May.
    9. Arnous, Ahmed H. & Biswas, Anjan & Yıldırım, Yakup & Zhou, Qin & Liu, Wenjun & Alshomrani, Ali S. & Alshehri, Hashim M., 2022. "Cubic–quartic optical soliton perturbation with complex Ginzburg–Landau equation by the enhanced Kudryashov’s method," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    10. Nikolay A. Kudryashov, 2022. "Optical Solitons of the Generalized Nonlinear Schrödinger Equation with Kerr Nonlinearity and Dispersion of Unrestricted Order," Mathematics, MDPI, vol. 10(18), pages 1-9, September.
    11. Wang, S.-F., 2023. "Novel soliton solution of (3+1)-dimensional perturbed Burgers equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    12. Nikolay A. Kudryashov & Sofia F. Lavrova, 2023. "Painlevé Test, Phase Plane Analysis and Analytical Solutions of the Chavy–Waddy–Kolokolnikov Model for the Description of Bacterial Colonies," Mathematics, MDPI, vol. 11(14), pages 1-17, July.
    13. Ahmed H. Arnous & Luminita Moraru, 2022. "Optical Solitons with the Complex Ginzburg–Landau Equation with Kudryashov’s Law of Refractive Index," Mathematics, MDPI, vol. 10(19), pages 1-13, September.
    14. Xu, Guoan & Zhang, Yi & Li, Jibin, 2022. "Exact solitary wave and periodic-peakon solutions of the complex Ginzburg–Landau equation: Dynamical system approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 157-167.
    15. Hu, Xiang & Yin, Zhixiang, 2022. "A study of the pulse propagation with a generalized Kudryashov equation," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    16. Ekici, Mehmet & Sonmezoglu, Abdullah & Biswas, Anjan, 2021. "Stationary optical solitons with Kudryashov’s laws of refractive index," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    17. Zayed, Elsayed M.E. & Alngar, Mohamed E.M. & Biswas, Anjan & Asma, Mir & Ekici, Mehmet & Alzahrani, Abdullah K. & Belic, Milivoj R., 2020. "Optical solitons and conservation laws with generalized Kudryashov’s law of refractive index," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    18. Han, Tianyong & Li, Zhao & Li, Chenyu, 2023. "Bifurcation analysis, stationary optical solitons and exact solutions for generalized nonlinear Schrödinger equation with nonlinear chromatic dispersion and quintuple power-law of refractive index in ," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    19. Silambarasan, Rathinavel & Nisar, Kottakkaran Sooppy, 2023. "Doubly periodic solutions and non-topological solitons of 2+1− dimension Wazwaz Kaur Boussinesq equation employing Jacobi elliptic function method," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    20. Yakup Yıldırım & Anjan Biswas & Luminita Moraru & Abdulah A. Alghamdi, 2023. "Quiescent Optical Solitons for the Concatenation Model with Nonlinear Chromatic Dispersion," Mathematics, MDPI, vol. 11(7), pages 1-25, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2012-:d:1131263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.