IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v336y2018icp454-464.html
   My bibliography  Save this article

Numerical solutions of nonlinear fractional differential equations by alternative Legendre polynomials

Author

Listed:
  • Meng, Zhijun
  • Yi, Mingxu
  • Huang, Jun
  • Song, Lei

Abstract

In this paper, numerical techniques are presented for solving initial value problems of nonlinear fractional differential equations. The method is implemented by applying alternative Legendre polynomials. The operational matrix of fractional integration and the product for the alternative Legendre polynomials are derived in order to transform the nonlinear equations into a system of algebraic equations. The study of the error analysis of the obtained method is also considered. Furthermore, numerical examples demonstrate that this method is applicable and accurate.

Suggested Citation

  • Meng, Zhijun & Yi, Mingxu & Huang, Jun & Song, Lei, 2018. "Numerical solutions of nonlinear fractional differential equations by alternative Legendre polynomials," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 454-464.
  • Handle: RePEc:eee:apmaco:v:336:y:2018:i:c:p:454-464
    DOI: 10.1016/j.amc.2018.04.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318303989
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.04.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Semary, Mourad S. & Hassan, Hany N. & Radwan, Ahmed G., 2018. "Modified methods for solving two classes of distributed order linear fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 106-119.
    2. Odibat, Zaid & Momani, Shaher, 2008. "Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 167-174.
    3. Cen, Zhongdi & Le, Anbo & Xu, Aimin, 2017. "A robust numerical method for a fractional differential equation," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 445-452.
    4. Yang, Dan & Wang, JinRong & O’Regan, D., 2018. "A class of nonlinear non-instantaneous impulsive differential equations involving parameters and fractional order," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 654-671.
    5. Sun, HongGuang & Chen, Wen & Li, Changpin & Chen, YangQuan, 2010. "Fractional differential models for anomalous diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2719-2724.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Lei & Chen, Yiming & Cheng, Gang & Barrière, Thierry, 2020. "Numerical analysis of fractional partial differential equations applied to polymeric visco-elastic Euler-Bernoulli beam under quasi-static loads," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Wang, Lei & Chen, Yi-Ming, 2020. "Shifted-Chebyshev-polynomial-based numerical algorithm for fractional order polymer visco-elastic rotating beam," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    3. Cao, Jiawei & Chen, Yiming & Wang, Yuanhui & Cheng, Gang & Barrière, Thierry, 2020. "Shifted Legendre polynomials algorithm used for the dynamic analysis of PMMA viscoelastic beam with an improved fractional model," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Hamid, Muhammad & Usman, Muhammad & Haq, Rizwan Ul & Tian, Zhenfu, 2021. "A spectral approach to analyze the nonlinear oscillatory fractional-order differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Solís-Pérez, J.E. & Gómez-Aguilar, J.F. & Atangana, A., 2018. "Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 175-185.
    2. S. Balaji, 2014. "Legendre Wavelet Operational Matrix Method for Solution of Riccati Differential Equation," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2014, pages 1-10, June.
    3. M. Motawi Khashan & Rohul Amin & Muhammed I. Syam, 2019. "A New Algorithm for Fractional Riccati Type Differential Equations by Using Haar Wavelet," Mathematics, MDPI, vol. 7(6), pages 1-12, June.
    4. H. X. Mamatova & Z. K. Eshkuvatov & Sh. Ismail, 2023. "A Hybrid Method for All Types of Solutions of the System of Cauchy-Type Singular Integral Equations of the First Kind," Mathematics, MDPI, vol. 11(20), pages 1-30, October.
    5. Ren, Jing & Zhai, Chengbo, 2020. "Stability analysis for generalized fractional differential systems and applications," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    6. S M, Sivalingam & Kumar, Pushpendra & Govindaraj, V., 2023. "A novel numerical scheme for fractional differential equations using extreme learning machine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    7. Odibat, Zaid M., 2009. "Exact solitary solutions for variants of the KdV equations with fractional time derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1264-1270.
    8. Nur Amirah Zabidi & Zanariah Abdul Majid & Adem Kilicman & Faranak Rabiei, 2020. "Numerical Solutions of Fractional Differential Equations by Using Fractional Explicit Adams Method," Mathematics, MDPI, vol. 8(10), pages 1-23, October.
    9. Hallaji, Majid & Dideban, Abbas & Khanesar, Mojtaba Ahmadieh & kamyad, Ali vahidyan, 2018. "Optimal synchronization of non-smooth fractional order chaotic systems with uncertainty based on extension of a numerical approach in fractional optimal control problems," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 325-340.
    10. Endah R. M. Putri & Lutfi Mardianto & Amirul Hakam & Chairul Imron & Hadi Susanto, 2021. "Removing non-smoothness in solving Black-Scholes equation using a perturbation method," Papers 2104.07839, arXiv.org, revised Apr 2021.
    11. Nagy, A.M., 2017. "Numerical solution of time fractional nonlinear Klein–Gordon equation using Sinc–Chebyshev collocation method," Applied Mathematics and Computation, Elsevier, vol. 310(C), pages 139-148.
    12. Sun, HongGuang & Li, Zhipeng & Zhang, Yong & Chen, Wen, 2017. "Fractional and fractal derivative models for transient anomalous diffusion: Model comparison," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 346-353.
    13. Gómez-Aguilar, J.F., 2018. "Analytical and Numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 52-75.
    14. Ahmed Farooq Qasim & Almutasim Abdulmuhsin Hamed, 2019. "Treating Transcendental Functions in Partial Differential Equations Using the Variational Iteration Method with Bernstein Polynomials," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2019, pages 1-8, March.
    15. Md. Habibur Rahman & Muhammad I. Bhatti & Nicholas Dimakis, 2023. "Employing a Fractional Basis Set to Solve Nonlinear Multidimensional Fractional Differential Equations," Mathematics, MDPI, vol. 11(22), pages 1-15, November.
    16. Abdelfattah Mustafa & Reda S. Salama & Mokhtar Mohamed, 2023. "Analysis of Generalized Nonlinear Quadrature for Novel Fractional-Order Chaotic Systems Using Sinc Shape Function," Mathematics, MDPI, vol. 11(8), pages 1-17, April.
    17. Yu Chen & JinRong Wang, 2019. "Continuous Dependence of Solutions of Integer and Fractional Order Non-Instantaneous Impulsive Equations with Random Impulsive and Junction Points," Mathematics, MDPI, vol. 7(4), pages 1-13, April.
    18. Bota, Constantin & Căruntu, Bogdan, 2017. "Analytical approximate solutions for quadratic Riccati differential equation of fractional order using the Polynomial Least Squares Method," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 339-345.
    19. Singh, Harendra & Srivastava, H.M., 2019. "Jacobi collocation method for the approximate solution of some fractional-order Riccati differential equations with variable coefficients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1130-1149.
    20. Li, Qiuyue & Zhou, Yaoming & Cong, Fuzhong & Liu, Hu, 2018. "Positive solutions to superlinear attractive singular impulsive differential equation," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 822-827.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:336:y:2018:i:c:p:454-464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.