IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v132y2020ics0960077919305429.html
   My bibliography  Save this article

Shifted-Chebyshev-polynomial-based numerical algorithm for fractional order polymer visco-elastic rotating beam

Author

Listed:
  • Wang, Lei
  • Chen, Yi-Ming

Abstract

In this paper, an effective numerical algorithm is proposed for the first time to solve the fractional visco-elastic rotating beam in the time domain. On the basis of fractional derivative Kelvin–Voigt and fractional derivative element constitutive models, the two governing equations of fractional visco-elastic rotating beams are established. According to the approximation technique of shifted Chebyshev polynomials, the integer and fractional differential operator matrices of polynomials are derived. By means of the collocation method and matrix technique, the operator matrices of governing equations can be transformed into the algebraic equations. In addition, the convergence analysis is performed. In particular, unlike the existing results, we can get the displacement and the stress numerical solution of the governing equation directly in the time domain. Finally, the sensitivity of the algorithm is verified by numerical examples.

Suggested Citation

  • Wang, Lei & Chen, Yi-Ming, 2020. "Shifted-Chebyshev-polynomial-based numerical algorithm for fractional order polymer visco-elastic rotating beam," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
  • Handle: RePEc:eee:chsofr:v:132:y:2020:i:c:s0960077919305429
    DOI: 10.1016/j.chaos.2019.109585
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919305429
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.109585?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meerschaert, Mark M. & Scalas, Enrico, 2006. "Coupled continuous time random walks in finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 114-118.
    2. Meng, Zhijun & Yi, Mingxu & Huang, Jun & Song, Lei, 2018. "Numerical solutions of nonlinear fractional differential equations by alternative Legendre polynomials," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 454-464.
    3. Chen, Wei-Ching, 2008. "Nonlinear dynamics and chaos in a fractional-order financial system," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1305-1314.
    4. Xie, Jiaquan & Yao, Zhibin & Gui, Hailian & Zhao, Fuqiang & Li, Dongyang, 2018. "A two-dimensional Chebyshev wavelets approach for solving the Fokker-Planck equations of time and space fractional derivatives type with variable coefficients," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 197-208.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Jiawei & Chen, Yiming & Wang, Yuanhui & Cheng, Gang & Barrière, Thierry, 2020. "Shifted Legendre polynomials algorithm used for the dynamic analysis of PMMA viscoelastic beam with an improved fractional model," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    2. Cui, Yuhuan & Qu, Jingguo & Han, Cundi & Cheng, Gang & Zhang, Wei & Chen, Yiming, 2022. "Shifted Bernstein–Legendre polynomial collocation algorithm for numerical analysis of viscoelastic Euler–Bernoulli beam with variable order fractional model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 361-376.
    3. Sun, Lin & Chen, Yiming, 2021. "Numerical analysis of variable fractional viscoelastic column based on two-dimensional Legendre wavelets algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Tabatabaei, S. Sepehr & Dehghan, Mohammad Reza & Talebi, Heidar Ali, 2022. "Real-time prediction of soft tissue deformation; a non-integer order modeling scheme and a practical verification for the theoretical concept," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Lei & Chen, Yiming & Cheng, Gang & Barrière, Thierry, 2020. "Numerical analysis of fractional partial differential equations applied to polymeric visco-elastic Euler-Bernoulli beam under quasi-static loads," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. David, S.A. & Machado, J.A.T. & Quintino, D.D. & Balthazar, J.M., 2016. "Partial chaos suppression in a fractional order macroeconomic model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 122(C), pages 55-68.
    3. Cao, Jiawei & Chen, Yiming & Wang, Yuanhui & Cheng, Gang & Barrière, Thierry, 2020. "Shifted Legendre polynomials algorithm used for the dynamic analysis of PMMA viscoelastic beam with an improved fractional model," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.
    5. Ren, Jinfu & Liu, Yang & Liu, Jiming, 2023. "Chaotic behavior learning via information tracking," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    6. Pratap, A. & Raja, R. & Cao, J. & Lim, C.P. & Bagdasar, O., 2019. "Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 241-260.
    7. Fendzi Donfack, Emmanuel & Nguenang, Jean Pierre & Nana, Laurent, 2020. "On the traveling waves in nonlinear electrical transmission lines with intrinsic fractional-order using discrete tanh method," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    8. Li, Xing-Yu & Wu, Kai-Ning & Liu, Xiao-Zhen, 2023. "Mittag–Leffler stabilization for short memory fractional reaction-diffusion systems via intermittent boundary control," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    9. Balcı, Ercan & Öztürk, İlhan & Kartal, Senol, 2019. "Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 43-51.
    10. Wafaa S. Sayed & Moheb M. R. Henein & Salwa K. Abd-El-Hafiz & Ahmed G. Radwan, 2017. "Generalized Dynamic Switched Synchronization between Combinations of Fractional-Order Chaotic Systems," Complexity, Hindawi, vol. 2017, pages 1-17, February.
    11. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    12. Yu, Qiang & Turner, Ian & Liu, Fawang & Vegh, Viktor, 2022. "The application of the distributed-order time fractional Bloch model to magnetic resonance imaging," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    13. Zhang, Zhe & Wang, Yaonan & Zhang, Jing & Ai, Zhaoyang & Liu, Feng, 2022. "Novel stability results of multivariable fractional-order system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    14. Ali Balcı, Mehmet, 2017. "Time fractional capital-induced labor migration model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 91-98.
    15. Runzi Luo & Haipeng Su, 2018. "The Robust Control and Synchronization of a Class of Fractional-Order Chaotic Systems with External Disturbances via a Single Output," Complexity, Hindawi, vol. 2018, pages 1-8, November.
    16. Xu, Fei & Lai, Yongzeng & Shu, Xiao-Bao, 2018. "Chaos in integer order and fractional order financial systems and their synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 125-136.
    17. Chenhui Wang, 2016. "Adaptive Fuzzy Control for Uncertain Fractional-Order Financial Chaotic Systems Subjected to Input Saturation," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-17, October.
    18. Huang, Conggui & Wang, Fei & Zheng, Zhaowen, 2021. "Exponential stability for nonlinear fractional order sampled-data control systems with its applications," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    19. Meerschaert, Mark M. & Nane, Erkan & Xiao, Yimin, 2013. "Fractal dimension results for continuous time random walks," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1083-1093.
    20. Cen, Zhongdi & Le, Anbo & Xu, Aimin, 2017. "A robust numerical method for a fractional differential equation," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 445-452.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:132:y:2020:i:c:s0960077919305429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.