IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i4p331-d220188.html
   My bibliography  Save this article

Continuous Dependence of Solutions of Integer and Fractional Order Non-Instantaneous Impulsive Equations with Random Impulsive and Junction Points

Author

Listed:
  • Yu Chen

    (Department of Mathematics, Guizhou University, Guiyang 550025, China)

  • JinRong Wang

    (Department of Mathematics, Guizhou University, Guiyang 550025, China
    School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China)

Abstract

This paper gives continuous dependence results for solutions of integer and fractional order, non-instantaneous impulsive differential equations with random impulse and junction points. The notion of the continuous dependence of solutions of these equations on the initial point is introduced. We prove some sufficient conditions that ensure the solutions to perturbed problems have a continuous dependence. Finally, we use numerical examples to demonstrate the obtained theoretical results.

Suggested Citation

  • Yu Chen & JinRong Wang, 2019. "Continuous Dependence of Solutions of Integer and Fractional Order Non-Instantaneous Impulsive Equations with Random Impulsive and Junction Points," Mathematics, MDPI, vol. 7(4), pages 1-13, April.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:4:p:331-:d:220188
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/4/331/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/4/331/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abbas, Saïd & Benchohra, Mouffak, 2015. "Uniqueness and Ulam stabilities results for partial fractional differential equations with not instantaneous impulses," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 190-198.
    2. Zhang, Jun & Wang, JinRong, 2018. "Numerical analysis for Navier–Stokes equations with time fractional derivatives," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 481-489.
    3. Yang, Dan & Wang, JinRong & O’Regan, D., 2018. "A class of nonlinear non-instantaneous impulsive differential equations involving parameters and fractional order," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 654-671.
    4. Liu, Shengda & Wang, JinRong & Shen, Dong & O’Regan, Donal, 2019. "Iterative learning control for differential inclusions of parabolic type with noninstantaneous impulses," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 48-59.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kui Liu & Michal Fečkan & D. O’Regan & JinRong Wang, 2019. "Hyers–Ulam Stability and Existence of Solutions for Differential Equations with Caputo–Fabrizio Fractional Derivative," Mathematics, MDPI, vol. 7(4), pages 1-14, April.
    2. Li, Qiuyue & Zhou, Yaoming & Cong, Fuzhong & Liu, Hu, 2018. "Positive solutions to superlinear attractive singular impulsive differential equation," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 822-827.
    3. Mallika Arjunan, M. & Abdeljawad, Thabet & Kavitha, V. & Yousef, Ali, 2021. "On a new class of Atangana-Baleanu fractional Volterra-Fredholm integro-differential inclusions with non-instantaneous impulses," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    4. Kumar, Vipin & Malik, Muslim & Debbouche, Amar, 2021. "Stability and controllability analysis of fractional damped differential system with non-instantaneous impulses," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    5. Jang, Bongsoo & Kim, Hyunju, 2024. "Mapping techniques for collocation method of time-fractional convection–diffusion equations in domains with cracks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 60-79.
    6. Yang, Dan & Wang, JinRong & O’Regan, D., 2018. "A class of nonlinear non-instantaneous impulsive differential equations involving parameters and fractional order," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 654-671.
    7. Ren, Jing & Zhai, Chengbo, 2020. "Stability analysis for generalized fractional differential systems and applications," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    8. Haide Gou & Tianxiang Wang, 2023. "The method of lower and upper solution for Hilfer evolution equations with non-instantaneous impulses," Indian Journal of Pure and Applied Mathematics, Springer, vol. 54(2), pages 499-523, June.
    9. Wang, Mei & Du, Feifei & Chen, Churong & Jia, Baoguo, 2019. "Asymptotic stability of (q, h)-fractional difference equations," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 158-167.
    10. Xu, Changjin & Liao, Maoxin & Li, Peiluan & Guo, Ying & Xiao, Qimei & Yuan, Shuai, 2019. "Influence of multiple time delays on bifurcation of fractional-order neural networks," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 565-582.
    11. Liu, Kui & Wang, JinRong & Zhou, Yong & O’Regan, Donal, 2020. "Hyers–Ulam stability and existence of solutions for fractional differential equations with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    12. Meng, Zhijun & Yi, Mingxu & Huang, Jun & Song, Lei, 2018. "Numerical solutions of nonlinear fractional differential equations by alternative Legendre polynomials," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 454-464.
    13. Liu, Jingna & Qi, Qi & Liu, Bing & Gao, Shujing, 2023. "Pest control switching models with instantaneous and non-instantaneous impulsive effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 926-938.
    14. JinRong Wang & Michal Fečkan & Amar Debbouche, 2019. "Time Optimal Control of a System Governed by Non-instantaneous Impulsive Differential Equations," Journal of Optimization Theory and Applications, Springer, vol. 182(2), pages 573-587, August.
    15. Li, Mengmeng & Wang, JinRong, 2018. "Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 324(C), pages 254-265.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:4:p:331-:d:220188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.