IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v48y2017i1p34-42.html
   My bibliography  Save this article

Finite-time stabilisation for discrete-time T–S fuzzy model system with channel fading and two types of parametric uncertainty

Author

Listed:
  • Chen Zheng
  • Jinde Cao
  • Manfeng Hu
  • Xiaozheng Fan

Abstract

In this paper, the problem of finite-time stabilisation is firstly studied for the Takagi–Sugeno (T–S) fuzzy model system with channel fading and parameter uncertainty. Two theorems are given for the cases with different types of uncertainty. The sufficient conditions in the form of the linear matrix inequalities are derived such that the stabilisation of the closed-loop system is guaranteed. At last, some illustrative examples are employed to demonstrate the efficiency of the results.

Suggested Citation

  • Chen Zheng & Jinde Cao & Manfeng Hu & Xiaozheng Fan, 2017. "Finite-time stabilisation for discrete-time T–S fuzzy model system with channel fading and two types of parametric uncertainty," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(1), pages 34-42, January.
  • Handle: RePEc:taf:tsysxx:v:48:y:2017:i:1:p:34-42
    DOI: 10.1080/00207721.2016.1146972
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2016.1146972
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2016.1146972?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weiming Xiang & Jian Xiao, 2013. "Finite-time stability and stabilisation for switched linear systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(2), pages 384-400.
    2. Chih-Peng Huang, 2013. "Stability analysis and controller synthesis for fuzzy descriptor systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(1), pages 23-33.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vimal Kumar, S. & Raja, R. & Marshal Anthoni, S. & Cao, Jinde & Tu, Zhengwen, 2018. "Robust finite-time non-fragile sampled-data control for T-S fuzzy flexible spacecraft model with stochastic actuator faults," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 483-497.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Bagher Abolhasani Jabali & Mohammad Hosein Kazemi, 2017. "Power System Event Ranking Using a New Linear Parameter-Varying Modeling with a Wide Area Measurement System-Based Approach," Energies, MDPI, vol. 10(8), pages 1-14, July.
    2. Xin-zhuang Dong, 2014. "Admissibility analysis of linear singular systems via a delta operator method," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(11), pages 2366-2375, November.
    3. Xin-Rong Yang & Guo-Ping Liu, 2016. "Admissible consensus for heterogeneous descriptor multi-agent systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(12), pages 2869-2877, September.
    4. Mu, Yunfei & Zhang, Huaguang & Su, Hanguang & Wang, Yingchun, 2021. "Robust normalization and H∞ stabilization for uncertain Takagi-Sugeno fuzzy singular systems with time-delays," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    5. Wenping Xue & Kangji Li & Guohai Liu, 2016. "DDI-based finite-time stability analysis for nonlinear switched systems with time-varying delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(12), pages 3027-3035, September.
    6. Göksu, Gökhan & Başer, Ulviye, 2021. "Finite-time stability for switched linear systems by Jordan decomposition," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    7. Yeguo Sun, 2014. "Finite-time boundedness and stabilisation of networked control systems with bounded packet dropout," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(9), pages 1963-1969, September.
    8. Chunbin Qin & Huaguang Zhang & Yanhong Luo & Binrui Wang, 2014. "Finite horizon optimal control of non-linear discrete-time switched systems using adaptive dynamic programming with ε-error bound," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(8), pages 1683-1693, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:48:y:2017:i:1:p:34-42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.