IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v332y2018icp425-436.html
   My bibliography  Save this article

Finite-time fault-tolerant control of neutral systems against actuator saturation and nonlinear actuator faults

Author

Listed:
  • Sakthivel, R.
  • Joby, Maya
  • Wang, Chao
  • Kaviarasan, B.

Abstract

This paper deals with the problem of finite-time fault-tolerant control design for a class of neutral systems subject to actuator saturation in which the time-varying delay appears in both the state and the state derivative. Specifically, this is the first attempt to consider the concept of finite-time stability for neutral systems under nonlinear fault-tolerant controller. In particular, the fault model which consists of both linear and nonlinear parts is implemented through the design of controller. By applying the Lyapunov technique and some integral inequalities, a set of sufficient conditions is derived in the form of linear matrix inequalities to ensure the finite-time stability of the addressed neutral systems. Finally, two numerical examples with simulation results are given to illustrate the effectiveness of the proposed method.

Suggested Citation

  • Sakthivel, R. & Joby, Maya & Wang, Chao & Kaviarasan, B., 2018. "Finite-time fault-tolerant control of neutral systems against actuator saturation and nonlinear actuator faults," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 425-436.
  • Handle: RePEc:eee:apmaco:v:332:y:2018:i:c:p:425-436
    DOI: 10.1016/j.amc.2018.03.081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318302625
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.03.081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Yangfan & Ma, Yuechao & Wang, Yanning, 2018. "Reliable finite-time sliding-mode control for singular time-delay system with sensor faults and randomly occurring nonlinearities," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 341-357.
    2. Dong, Jiuxiang & Hou, Junteng, 2017. "Output feedback fault-tolerant control by a set-theoretic description of T–S fuzzy systems," Applied Mathematics and Computation, Elsevier, vol. 301(C), pages 117-134.
    3. Chen, Guici & Gao, Yu & Zhu, Shasha, 2017. "Finite-time dissipative control for stochastic interval systems with time-delay and Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 310(C), pages 169-181.
    4. Fu, Lei & Ma, Yuechao, 2016. "Passive control for singular time-delay system with actuator saturation," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 181-193.
    5. Chang, Xiao-Heng & Li, Zhi-Min & Xiong, Jun & Wang, Yi-Ming, 2017. "LMI approaches to input and output quantized feedback stabilization of linear systems," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 162-175.
    6. R. Sakthivel & M. Sathishkumar & Y. Ren & O.M. Kwon, 2017. "Fault-tolerant sampled-data control of singular networked cascade control systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(10), pages 2079-2090, July.
    7. Gao, Fang & Wu, Min & She, Jinhua & Cao, Weihua, 2016. "Disturbance rejection in nonlinear systems based on equivalent-input-disturbance approach," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 244-253.
    8. Qi, Wenhai & Gao, Xianwen, 2016. "H∞ observer design for stochastic time-delayed systems with Markovian switching under partly known transition rates and actuator saturation," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 80-97.
    9. Hao Liu & Peng Shi & Hamid Reza Karimi & Mohammed Chadli, 2016. "Finite-time stability and stabilisation for a class of nonlinear systems with time-varying delay," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(6), pages 1433-1444, April.
    10. Ye, Dan & Yang, Xiang & Su, Lei, 2017. "Fault-tolerant synchronization control for complex dynamical networks with semi-Markov jump topology," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 36-48.
    11. Zhou, Jianping & Park, Ju H. & Ma, Qian, 2016. "Non-fragile observer-based H∞ control for stochastic time-delay systems," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 69-83.
    12. Liu, Zhen & Gao, Cunchen & Kao, Yonggui, 2015. "Robust H-infinity control for a class of neutral-type systems via sliding mode observer," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 669-681.
    13. Sakthivel, R. & Karthick, S.A. & Kaviarasan, B. & Lim, Yongdo, 2017. "Reliable state estimation of switched neutral system with nonlinear actuator faults via sampled-data control," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 129-147.
    14. Shen, Mouquan & Yan, Shen & Zhang, Guangming & Park, Ju H., 2016. "Finite-time H∞ static output control of Markov jump systems with an auxiliary approach," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 553-561.
    15. Wenping Xue & Kangji Li & Guohai Liu, 2016. "DDI-based finite-time stability analysis for nonlinear switched systems with time-varying delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(12), pages 3027-3035, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abinandhitha, R. & Sakthivel, R. & Tatar, N. & Manikandan, R., 2022. "Anti-disturbance observer-based control for fuzzy chaotic semi-Markov jump systems with multiple disturbances and mixed actuator failures," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    2. Yin, Zeyang & Luo, Jianjun & Wei, Caisheng, 2019. "Quasi fixed-time fault-tolerant control for nonlinear mechanical systems with enhanced performance," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 157-173.
    3. Wang, Yudong & Xia, Jianwei & Wang, Zhen & Shen, Hao, 2020. "Design of a fault-tolerant output-feedback controller for thickness control in cold rolling mills," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    4. Huang, Jun & Yang, Lin & Trinh, Hieu, 2021. "Robust control for incremental quadratic constrained nonlinear time-delay systems subject to actuator saturation," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    5. Hamid Ghadiri & Hamed Khodadadi & Saleh Mobayen & Jihad H. Asad & Thaned Rojsiraphisal & Arthur Chang, 2021. "Observer-Based Robust Control Method for Switched Neutral Systems in the Presence of Interval Time-Varying Delays," Mathematics, MDPI, vol. 9(19), pages 1-20, October.
    6. Gu, Yang & Shen, Mouquan & Ren, Yuesheng & Liu, Hongxia, 2020. "H∞ finite-time control of unknown uncertain systems with actuator failure," Applied Mathematics and Computation, Elsevier, vol. 383(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harshavarthini, S. & Sakthivel, R. & Ma, Yong-Ki & Muslim, M., 2020. "Finite-time resilient fault-tolerant investment policy scheme for chaotic nonlinear finance system," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    2. Wu, Kai-Ning & Sun, Han-Xiao & Yang, Baoqing & Lim, Cheng-Chew, 2018. "Finite-time boundary control for delay reaction–diffusion systems," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 52-63.
    3. Yu, Peng & Ma, Yuechao, 2020. "Observer-based asynchronous control for Markov jump systems," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    4. Li, Lei & Qi, Wenhai & Chen, Xiaoming & Kao, Yonggui & Gao, Xianwen & Wei, Yunliang, 2018. "Stability analysis and control synthesis for positive semi-Markov jump systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 363-375.
    5. Karthick, S.A. & Sakthivel, R. & Ma, Y.K. & Mohanapriya, S. & Leelamani, A., 2019. "Disturbance rejection of fractional-order T-S fuzzy neural networks based on quantized dynamic output feedback controller," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 846-857.
    6. Luo, Jinnan & Tian, Wenhong & Zhong, Shouming & Shi, Kaibo & Chen, Hao & Gu, Xian-Ming & Wang, Wenqin, 2017. "Non-fragile asynchronous H∞ control for uncertain stochastic memory systems with Bernoulli distribution," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 109-128.
    7. Aravindh, D. & Sakthivel, R. & Kong, Fanchao & Marshal Anthoni, S., 2020. "Finite-time reliable stabilization of uncertain semi-Markovian jump systems with input saturation," Applied Mathematics and Computation, Elsevier, vol. 384(C).
    8. Gao, Xianwen & He, Hangfeng & Qi, Wenhai, 2017. "Admissibility analysis for discrete-time singular Markov jump systems with asynchronous switching," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 431-441.
    9. Chan, Joseph Chang Lun & Tan, Chee Pin & Trinh, Hieu & Kamal, Md Abdus Samad & Chiew, Yeong Shiong, 2019. "Robust fault reconstruction for a class of non-infinitely observable descriptor systems using two sliding mode observers in cascade," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 78-92.
    10. Harshavarthini, S. & Sakthivel, R. & Kong, F., 2020. "Finite-time synchronization of chaotic coronary artery system with input time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    11. Xiong, Jun & Chang, Xiao-Heng & Yi, Xiaojian, 2018. "Design of robust nonfragile fault detection filter for uncertain dynamic systems with quantization," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 774-788.
    12. Zhao, Wenying & Ma, Yuechao & Chen, Aihong & Fu, Lei & Zhang, Yutong, 2019. "Robust sliding mode control for Markovian jump singular systems with randomly changing structure," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 81-96.
    13. Shen, Zixiang & Li, Chuandong & Li, Hongfei & Cao, Zhengran, 2019. "Estimation of the domain of attraction for discrete-time linear impulsive control systems with input saturation," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    14. Kong, Chuifeng & Ma, Yuechao & Liu, Deyou, 2019. "Observer-based quantized sliding mode dissipative control for singular semi-Markovian jump systems," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    15. Chen, Weimin & Zhang, Baoyong & Ma, Qian, 2018. "Decay-rate-dependent conditions for exponential stability of stochastic neutral systems with Markovian jumping parameters," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 93-105.
    16. Tharanidharan, V. & Sakthivel, R. & Ren, Yong & Marshal Anthoni, S., 2022. "Robust finite-time PID control for discrete-time large-scale interconnected uncertain system with discrete-delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 370-383.
    17. Gu, Yang & Shen, Mouquan & Ren, Yuesheng & Liu, Hongxia, 2020. "H∞ finite-time control of unknown uncertain systems with actuator failure," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    18. Ye, Dan & Yang, Xiang & Su, Lei, 2017. "Fault-tolerant synchronization control for complex dynamical networks with semi-Markov jump topology," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 36-48.
    19. Zhiguo Yan & Zhiwei Zhang & Guolin Hu & Baolong Zhu, 2022. "Observer-Based Finite-Time H ∞ Control of the Blood Gases System in Extracorporeal Circulation via the T-S Fuzzy Model," Mathematics, MDPI, vol. 10(12), pages 1-15, June.
    20. Yoo, Sung Jin & Park, Bong Seok, 2021. "Quantized feedback control strategy for tracking performance guarantee of nonholonomic mobile robots with uncertain nonlinear dynamics," Applied Mathematics and Computation, Elsevier, vol. 407(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:332:y:2018:i:c:p:425-436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.