IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v307y2017icp265-270.html
   My bibliography  Save this article

Network Entropies Based on Independent Sets and Matchings

Author

Listed:
  • Cao, Shujuan
  • Dehmer, Matthias
  • Kang, Zhe

Abstract

Entropy-based measures have been used to characterize the structure of complex networks. Various graph entropies based on different graph parameters have been proposed and studied. So, it has been intricate to decide which measure is the right one for solving a particular problem. In this paper, we introduce graph entropy measures based on independent sets and matchings of graphs. The values of entropies of some special graphs are calculated and we draw several conclusions regrading the usability of the measures. Based on our findings, we conclude that it should be demanding studying extremal values of the novel entropies.

Suggested Citation

  • Cao, Shujuan & Dehmer, Matthias & Kang, Zhe, 2017. "Network Entropies Based on Independent Sets and Matchings," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 265-270.
  • Handle: RePEc:eee:apmaco:v:307:y:2017:i:c:p:265-270
    DOI: 10.1016/j.amc.2017.02.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630031730125X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.02.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Zengqiang & Dehmer, Matthias & Shi, Yongtang, 2015. "Bounds for degree-based network entropies," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 983-993.
    2. Cao, Shujuan & Dehmer, Matthias, 2015. "Degree-based entropies of networks revisited," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 141-147.
    3. Yu, Guihai & Liu, Xin & Qu, Hui, 2017. "Singularity of Hermitian (quasi-)Laplacian matrix of mixed graphs," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 287-292.
    4. Lang, Rongling & Li, Tao & Mo, Desen & Shi, Yongtang, 2016. "A novel method for analyzing inverse problem of topological indices of graphs using competitive agglomeration," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 115-121.
    5. Matthias Dehmer & Abbe Mowshowitz & Yongtang Shi, 2014. "Structural Differentiation of Graphs Using Hosoya-Based Indices," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-4, July.
    6. Shi, Yongtang, 2015. "Note on two generalizations of the Randić index," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 1019-1025.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei, Hui & Li, Tao & Ma, Yuede & Wang, Hua, 2018. "Analyzing lattice networks through substructures," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 297-314.
    2. Wan, Pengfei & Tu, Jianhua & Dehmer, Matthias & Zhang, Shenggui & Emmert-Streib, Frank, 2019. "Graph entropy based on the number of spanning forests of c-cyclic graphs," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    3. Wan, Pengfei & Tu, Jianhua & Zhang, Shenggui & Li, Binlong, 2018. "Computing the numbers of independent sets and matchings of all sizes for graphs with bounded treewidth," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 42-47.
    4. Lan, Yongxin & Li, Tao & Ma, Yuede & Shi, Yongtang & Wang, Hua, 2018. "Vertex-based and edge-based centroids of graphs," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 445-456.
    5. Ghorbani, Modjtaba & Dehmer, Matthias & Rajabi-Parsa, Mina & Emmert-Streib, Frank & Mowshowitz, Abbe, 2019. "Hosoya entropy of fullerene graphs," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 88-98.
    6. Lan, Yongxin & Li, Tao & Wang, Hua & Xia, Chengyi, 2019. "A note on extremal trees with degree conditions," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 70-79.
    7. Mikołaj Morzy & Tomasz Kajdanowicz & Przemysław Kazienko, 2017. "On Measuring the Complexity of Networks: Kolmogorov Complexity versus Entropy," Complexity, Hindawi, vol. 2017, pages 1-12, November.
    8. Yu, Guihai & Qu, Hui, 2018. "The coefficients of the immanantal polynomial," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 38-44.
    9. Wang, Juan & Li, Chao & Xia, Chengyi, 2018. "Improved centrality indicators to characterize the nodal spreading capability in complex networks," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 388-400.
    10. Ma, Yuede & Cao, Shujuan & Shi, Yongtang & Dehmer, Matthias & Xia, Chengyi, 2019. "Nordhaus–Gaddum type results for graph irregularities," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 268-272.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Guihai & Qu, Hui, 2015. "Hermitian Laplacian matrix and positive of mixed graphs," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 70-76.
    2. Li, Fengwei & Ye, Qingfang & Sun, Yuefang, 2017. "On edge-rupture degree of graphs," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 282-293.
    3. Ma, Yuede & Cao, Shujuan & Shi, Yongtang & Dehmer, Matthias & Xia, Chengyi, 2019. "Nordhaus–Gaddum type results for graph irregularities," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 268-272.
    4. Guihai Yu & Hui Qu, 2018. "More on Spectral Analysis of Signed Networks," Complexity, Hindawi, vol. 2018, pages 1-6, October.
    5. Ni, Chengzhang & Yang, Jun & Kong, Demei, 2020. "Sequential seeding strategy for social influence diffusion with improved entropy-based centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    6. Hua, Hongbo & Das, Kinkar Ch., 2016. "On the Wiener polarity index of graphs," Applied Mathematics and Computation, Elsevier, vol. 280(C), pages 162-167.
    7. Su, Guifu & Tu, Jianhua & Das, Kinkar Ch., 2015. "Graphs with fixed number of pendent vertices and minimal Zeroth-order general Randić index," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 705-710.
    8. Wen, Tao & Jiang, Wen, 2018. "An information dimension of weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 388-399.
    9. Du, Zhibin, 2017. "Further results regarding the sum of domination number and average eccentricity," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 299-309.
    10. Chen, Zengqiang & Dehmer, Matthias & Shi, Yongtang, 2015. "Bounds for degree-based network entropies," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 983-993.
    11. Ali, Akbar & Raza, Zahid & Bhatti, Akhlaq Ahmad, 2016. "Bond incident degree (BID) indices of polyomino chains: A unified approach," Applied Mathematics and Computation, Elsevier, vol. 287, pages 28-37.
    12. Fei, Junqi & Tu, Jianhua, 2018. "Complete characterization of bicyclic graphs with the maximum and second-maximum degree Kirchhoff index," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 118-124.
    13. Ma, Gang & Bian, Qiuju & Wang, Jianfeng, 2019. "The weighted vertex PI index of (n,m)-graphs with given diameter," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 329-337.
    14. Milovanović, E.I. & Milovanović, I.Ž. & Dolićanin, E.Ć. & Glogić, E., 2016. "A note on the first reformulated Zagreb index," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 16-20.
    15. Goubko, Mikhail, 2018. "Maximizing Wiener index for trees with given vertex weight and degree sequences," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 102-114.
    16. Borovićanin, Bojana & Furtula, Boris, 2016. "On extremal Zagreb indices of trees with given domination number," Applied Mathematics and Computation, Elsevier, vol. 279(C), pages 208-218.
    17. Xing Zhou & Wei Peng & Zhen Xu & Bo Yang, 2015. "Hardness Analysis and Empirical Studies of the Relations among Robustness, Topology and Flow in Dynamic Networks," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-29, December.
    18. Zhang, Xin, 2019. "Upper bound on the sum of powers of the degrees of graphs with few crossings per edge," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 163-169.
    19. Dingyi Gan & Bin Yang & Yongchuan Tang, 2020. "An Extended Base Belief Function in Dempster–Shafer Evidence Theory and Its Application in Conflict Data Fusion," Mathematics, MDPI, vol. 8(12), pages 1-19, December.
    20. Ghorbani, Modjtaba & Dehmer, Matthias & Rajabi-Parsa, Mina & Emmert-Streib, Frank & Mowshowitz, Abbe, 2019. "Hosoya entropy of fullerene graphs," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 88-98.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:307:y:2017:i:c:p:265-270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.